

Communications
in Computer and Information Science 10

Joaquim Filipe Boris Shishkov
Markus Helfert (Eds.)

Software and Data
Technologies

First International Conference, ICSOFT 2006
Setúbal, Portugal, September 11-14, 2006
Revised Selected Papers

13

Volume Editors

Joaquim Filipe
Polytechnic Institute of Setúbal – INSTICC
Av. D. Manuel I, 27A - 2. Esq., 2910-595 Setúbal, Portugal
E-mail: j.filipe@est.ips.pt

Boris Shishkov
Interdisciplinary Institute for Collaboration and Research
on Enterprise Systems and Technology – IICREST
P.O. Box 104, 1618 Sofia, Bulgaria
E-mail: b.b.shishkov@ewi.utwente.nl

Markus Helfert
Dublin City University, School of Computing
Dublin 9, Ireland
E-mail: markus.helfert@computing.dcu.ie

Library of Congress Control Number: 2008931195

CR Subject Classification (1998): D.2, D.3, C.2.4, H.2, I.2.4

ISSN 1865-0929
ISBN-10 3-540-70619-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70619-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12441204 06/3180 5 4 3 2 1 0

Preface

This book contains the best papers of the First International Conference on Software
and Data Technologies (ICSOFT 2006), organized by the Institute for Systems and
Technologies of Information, Communication and Control (INSTICC) in cooperation
with the Object Management Group (OMG). Hosted by the School of Business of the
Polytechnic Institute of Setubal, the conference was sponsored by Enterprise Ireland
and the Polytechnic Institute of Setúbal.

The purpose of ICSOFT 2006 was to bring together researchers and practitioners inter-
ested in information technology and software development. The conference tracks were
“Software Engineering”, “Information Systems and Data Management”, “Programming
Languages”, “Distributed and Parallel Systems” and “Knowledge Engineering.”

Being crucial for the development of information systems, software and data tech-
nologies encompass a large number of research topics and applications: from imple-
mentation-related issues to more abstract theoretical aspects of software engineering;
from databases and data-warehouses to management information systems and knowl-
edge-base systems; next to that, distributed systems, pervasive computing, data quality
and other related topics are included in the scope of this conference.

ICSOFT included in its program a panel to discuss the future of software develop-
ment, composed by six distinguished world-class researchers. Furthermore, the con-
ference program was enriched by a tutorial and six keynote lectures.

ICSOFT 2006 received 187 paper submissions from 39 countries in all continents.
All submissions were evaluated using a double-blind review process: each paper was
reviewed by at least two experts belonging to the conference Program Committee. A
small number of 23 papers were selected to be presented as full papers at the confer-
ence and be published in the conference proceedings as completed research papers. In
addition 44 papers, describing work-in-progress, were accepted as short papers and 26
papers were selected for poster presentation. This resulted in a full-paper acceptance
ratio of 12%. Then, a short list of excellent and significant papers was selected to
appear in this book. We hope that you will find these papers interesting and we hope
they represent a helpful reference in the future for all those who need to address any of
the research areas mentioned above.

March 2008 Joaquim Filipe

Boris Shishkov
Markus Helfert

Conference Committee

Conference Chair

Joaquim Filipe, Polytechnic Institute of Setúbal / INSTICC, Portugal

Program Co-chairs

Markus Helfert, Dublin City University, Ireland
Boris Shishkov, University of Twente, The Netherlands

Organizing Committee

Paulo Brito, INSTICC, Portugal
Marina Carvalho, INSTICC, Portugal
Hélder Coelhas, INSTICC, Portugal
Bruno Encarnação, INSTICC, Portugal
Vítor Pedrosa, INSTICC, Portugal
Mónica Saramago, INSTICC, Portugal

Program Committee

Hamideh Afsarmanesh, The Netherlands
Jacky Akoka, France
Tsanka Angelova, Bulgaria
Keijiro Araki, Japan
Lora Aroyo, The Netherlands
Colin Atkinson, Germany
Juan Carlos Augusto, UK
Elisa Baniassad, China
Mortaza S. Bargh, The Netherlands
Joseph Barjis, USA
Noureddine Belkhatir, France
Fevzi Belli, Germany
Alexandre Bergel, Ireland
Mohamed Bettaz, Jordan
Robert Biddle, Canada
Maarten Boasson, The Netherlands
Wladimir Bodrow, Germany
Marcello Bonsangue, The Netherlands
Jonathan Bowen, UK

Mark van den Brand, The Netherlands
Lisa Brownsword, USA
Barrett Bryant, USA
Cinzia Cappiello, Italy
Antonio Cerone, China
W.K. Chan, China
Kung Chen, Taiwan
Samuel Chong, UK
Chih-Ping Chu, Taiwan
Peter Clarke, USA
Rolland Colette, France
Alfredo Cuzzocrea, Italy
Bogdan Czejdo, USA
David Deharbe, Brazil
Serge Demeyer, Belgium
Steve Demurjian, USA
Nikolay Diakov, The Netherlands
Jan L.G. Dietz, The Netherlands
Jin Song Dong, Singapore

 Organization VIII

Brian Donnellan, Ireland
Jürgen Ebert, Germany
Paul Ezhilchelvan, UK
Behrouz Far, Canada
Bernd Fischer, UK
Gerald Gannod, USA
Jose M. Garrido, USA
Dragan Gasevic, Canada
Nikolaos Georgantas, France
Paola Giannini, Italy
Paul Gibson, Ireland
Wolfgang Grieskamp, USA
Daniela Grigori, France
Klaus Grimm, Germany
Rajiv Gupta, USA
Tibor Gyimothy, Hungary
Naohiro Hayashibara, Japan
Jang Eui Hong, Korea
Shinichi Honiden, Japan
Ilian Ilkov, The Netherlands
Ivan Ivanov, USA
Tuba Yavuz Kahveci, USA
Krishna Kavi, USA
Khaled Khan, Australia
Roger King, USA
Christoph Kirsch, Austria
Paul Klint, The Netherlands
Alexander Knapp, Germany
Mieczyslaw Kokar, USA
Michael Kölling, UK
Dimitri Konstantas, Switzerland
Jens Krinke, Germany
Tei-Wei Kuo, Taiwan
Rainer Koschke, Germany
Eitel Lauria, USA
Insup Lee, USA
Kuan-Ching Li, Taiwan
Panos Linos, USA
Shaoying Liu, Japan
Zhiming Liu, China
Andrea De Lucia, Italy
Christof Lutteroth, New Zealand
Broy Manfred, Germany
Tiziana Margaria, Germany
Johannes Mayer, Germany
Fergal McCaffery, Ireland
Hamid Mcheick, Canada

Prasenjit Mitra, USA
Dimitris Mitrakos, Greece
Roland Mittermeir, Austria
Birger Møller-Pedersen, Norway
Mattia Monga, Italy
Aldo De Moor, Belgium
Peter Müller, Switzerland
Paolo Nesi, Italy
Elisabetta Di Nitto, Italy
Alan O'Callaghan, UK
Rory O'Connor, Ireland
Claus Pahl, Ireland
Witold Pedrycz, Canada
Massimiliano Di Penta, Italy
Steef Peters, The Netherlands
Mario Piattini, Spain
Arnd Poetzsch-Heffter, Germany
Andreas Polze, Germany
Christoph von Praun, USA
Jolita Ralyte, Switzerland
Juan Fernandez Ramil, UK
Anders P. Ravn, Denmark
Marek Reformat, Canada
Arend Rensink, The Netherlands
Stefano Russo, Italy
Shazia Sadiq, Australia
Kristian Sandahl, Sweden
Bradley Schmerl, USA
Andy Schürr, Germany
Isabel Seruca, Portugal
Marten van Sinderen, The Netherlands
Joao Sousa, USA
George Spanoudakis, UK
Peter Stanchev, USA
Larry Stapleton, Ireland
Stoicho Stoichev, Bulgaria
Kevin Sullivan, USA
Junichi Suzuki, USA
Ramayah Thurasamy, Malaysia
Yasar Tonta, Turkey
Yves Le Traon, France
Enrico Vicario, Italy
Bing Wang, UK
Kun-Lung Wu, USA
Hongwei Xi, USA
Haiping Xu, USA
Hongji Yang, UK

 Organization IX

Yunwen Ye, USA
Yun Yang, Australia
Gianluigi Zavattaro, Italy
Xiaokun Zhang, Canada

Jianjun Zhao, China
Hong Zhu, UK
Andrea Zisman, UK

Auxiliary Reviewers

Alessandro Aldini, Italy
Pete Andras, UK
Xiaoshan Li, China
Shih-Hsi Liu, USA
Michele Pinna, Italy

Riccardo Solmi, Italy
Hongli Yang, China
Chengcui Zhang, USA
Liang Zhao, China
Wei Zhao, USA

Invited Speakers

Leszek A. Maciaszek, Macquarie University, Australia
Juan Carlos Augusto, University of Ulster at Jordanstown, UK
Tom Gilb, Norway
Dimitris Karagiannis, University of Vienna, Austria
Brian Henderson-Sellers, University of Technology, Australia
Marten J. van Sinderen, University of Twente, The Netherlands

Table of Contents

Invited Papers

Adaptive Integration of Enterprise and B2B Applications 3
Leszek A. Maciaszek

Ambient Intelligence: Basic Concepts and Applications 16
Juan Carlos Augusto

How to Quantify Quality: Finding Scales of Measure 27
Tom Gilb

Metamodeling as an Integration Concept . 37
Dimitris Karagiannis and Peter Höfferer

Engineering Object and Agent Methodologies . 51
B. Henderson-Sellers

Part I: Programming Languages

From Static to Dynamic Process Types . 61
Franz Puntigam

Aspectboxes: Controlling the Visibility of Aspects . 74
Alexandre Bergel, Robert Hirschfeld, Siobhán Clarke, and
Pascal Costanza

On State Classes and Their Dynamic Semantics . 84
Ferruccio Damiani, Elena Giachino, Paola Giannini, and
Emanuele Cazzola

Software Implementation of the IEEE 754R Decimal Floating-Point
Arithmetic . 97

Marius Cornea, Cristina Anderson, and Charles Tsen

Part II: Software Engineering

Bridging between Middleware Systems: Optimisations Using
Downloadable Code . 113

Jan Newmarch

MDE for BPM: A Systematic Review . 127
Jose Manuel Perez, Francisco Ruiz, and Mario Piattini

XII Table of Contents

Exploring Feasibility of Software Defects Orthogonal Classification 136
Davide Falessi and Giovanni Cantone

Mapping Medical Device Standards Against the CMMI for
Configuration Management . 153

Fergal McCaffery, Rory V O’Connor, and Gerry Coleman

A Systematic Review Measurement in Software Engineering:
State-of-the-Art in Measures . 165

Oswaldo Gómez, Hanna Oktaba, Mario Piattini, and Félix Garćıa

Engineering a Component Language: CompJava . 177
Hans Albrecht Schmid and Marco Pfeifer

Part III: Distributed and Parallel Systems

Towards a Quality Model for Grid Portals . 195
Ma Ángeles Moraga, Coral Calero, Mario Piattini, and David Walker

Algorithmic Skeletons for Branch and Bound . 204
Michael Poldner and Herbert Kuchen

A Hybrid Topology Architecture for P2P File Sharing Systems 220
J.P. Muñoz-Gea, J. Malgosa-Sanahuja, P. Manzanares-Lopez,
J.C. Sanchez-Aarnoutse, and A.M. Guirado-Puerta

Parallel Processing of “Group-By Join” Queries on Shared Nothing
Machines . 230

M. Al Hajj Hassan and M. Bamha

Impact of Wrapped System Call Mechanism on Commodity
Processors . 242

Satoshi Yamada, Shigeru Kusakabe, and Hideo Taniguchi

Part IV: Information Systems and Data Management

Adding More Support for Associations to the ODMG Object Model 257
Bryon K. Ehlmann

Measuring Effectiveness of Computing Facilities in Academic Institutes:
A New Solution for a Difficult Problem . 270

Smriti Sharma and Veena Bansal

Combining Information Extraction and Data Integration in the
ESTEST System . 279

Dean Williams and Alexandra Poulovassilis

Table of Contents XIII

Introducing a Change-Resistant Framework for the Development and
Deployment of Evolving Applications . 293

Georgios Voulalas and Georgios Evangelidis

Smart Business Objects for Web Applications: A New Approach to
Model Business Objects . 307

Xufeng (Danny) Liang and Athula Ginige

A Data Mining Approach to Learning Probabilistic User Behavior
Models from Database Access Log . 323

Mikhail Petrovskiy

Part V: Knowledge Engineering

Approximate Reasoning to Learn Classification Rules 335
Amel Borgi

Combining Metaheuristics for the Job Shop Scheduling Problem with
Sequence Dependent Setup Times . 348

Miguel A. González, Maŕıa R. Sierra, Camino R. Vela,
Ramiro Varela, and Jorge Puente

A Description Clustering Data Mining Technique for Heterogeneous
Data . 361

Alejandro Garćıa López, Rafael Berlanga, and Roxana Danger

A Pattern Selection Algorithm in Kernel PCA Applications 374
Ruixin Yang, John Tan, and Menas Kafatos

Author Index . 389

Invited Papers

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 3–15, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adaptive Integration of Enterprise and B2B Applications

Leszek A. Maciaszek

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
leszek@ics.mq.edu.au

Abstract. Whether application integration is internal to the enterprise or takes the
form of external Business-to-Business (B2B) automation, the main integration
challenge is similar – how to ensure that the integration solution has the quality of
adaptiveness (i.e. it is understandable, maintainable, and scalable)? This question is
hard enough for stand-alone application developments, let alone integration devel-
opments in which the developers may have little control over participating applica-
tions. This paper identifies main strategic (architectural), tactical (engineering), and
operational (managerial) imperatives for buil-ding adaptiveness into solutions re-
sulting from integration projects.

Keywords: Application integration, software adaptiveness.

1 Introduction

Today’s enterprise and e-business systems are rarely developed in-house from scratch.
Most systems are the results of evolutionary maintenance of existing systems. Occasion-
ally new systems are developed, but always with the intent to integrate with the existing
software. New technologies emerge to facilitate development and integration of enter-
prise and e-business systems. The current thrust comes from the component technology
standards and the related technology of Service Oriented Architecture (SOA).

This paper centers on conditions for developing adaptive complex enterprise and e-
business systems. It concentrates on architectural design, engineering principles, and
operational imperatives for developing such systems. An adaptive system has the
ability to change to suit different conditions; the ability to continue into the future by
meeting existing functional and nonfunctional requirements and by adjusting to ac-
commodate any new and changing requirements. In some ways, an adaptive system is
an antonym of a legacy system. A necessary condition of adaptiveness is the identifi-
cation and minimization of dependencies in software. A software element A depends
on an element B, if a change in B may necessitate a change in A.

Enterprise and e-business systems are complex – their properties and behavior can-
not be fully explained by the understanding of their component parts. The software
crisis has been looming at our doorsteps for years. Cobol legacy systems and the mil-
lennium bug are well known examples on the global scale, and the examples of indi-
vidual software disasters are countless. Each time when faced with a crisis, we have
been engaging the next technological gear to solve the problem. But also each time
we have been introducing an additional level of complexity to the software and with it

4 L.A. Maciaszek

new and more troublesome non-adaptive solutions. The premise of this paper is that,
unless we start producing adaptive systems, we are yet to face the first true software
crisis.

2 Development or Integration?

Business has embraced the Internet-age technology with zeal. Thanks to application
integration technologies, organizations can function as loosely connected networks of
cooperating units. Development of stand-alone applications is all but history. Accord-
ingly, the term “application development” is being replaced by the more accurate term
– “integration development”.

There are three integration levels [2]. Figure 1 shows how the three levels are related
to each other. All integration projects imply exchange of data between integrated appli-
cations. Typically this means that an application A gets access to application’s B database
either directly or by data replication techniques.

Process level

Application level (interface-oriented)

Data level
(information- and portal-oriented)

Fig. 1. Integration levels

At application level, application A uses the interfaces (services) of application B to
request data or to request execution of the services provided by application B. A clas-
sic example is a Loan Broker application [3], in which the integration solution negoti-
ates loan terms with the banks for the customers. Although Loan Broker negotiates
with many banks, the negotiations are separate for each bank. Hence, this is dyadic
(point-to-point) integration.

Another successful example of dyadic integration is VMI (Vendor-Managed In-
ventory). In VMI integration, a vendor/supplier is responsible for monitoring and re-
plenishing customer inventory at the appropriate time to maintain predefined levels.

However, the ultimate goal of integration is the much more complex integration of
detailed business processes performed by applications (and resulting in services and
data production). At the process level new workflows of processes are designed that
integrate processes already available in existing applications to provide a new value-
added functionality.

 Adaptive Integration of Enterprise and B2B Applications 5

Clearly, process level integration blurs the line between development and integra-
tion. At this level, an integration project is also a new development project. A new
umbrella application is produced providing solutions that go beyond the sum of rela-
tionships between participating applications/enterprises and that go beyond simple
integration effects.

The need for process-level integrations arises when businesses want to enter into
collaborative environments to achieve joint outcomes, not just their own outcomes.
Electronic marketplaces (e-markets) subscribe to that goal, but business factors limit
e-market expansion. It is simply the case, that “sharing price or capacity information
is often not advantageous to all parties in a supply chain or vertical market” [1].

Where the business conditions are right, process-level integrations can flourish. [1]
provides two illustrative examples – transportation optimization and cash netting.
Transportation optimization is a collaborative logistic application that consolidates
various in-transit status messages for the trucks traveling around Europe so that empty
trucks can be dynamically hired to take loads. Cash netting is designed to replace
point-to-point invoice-payment processes by the “cash-netting” at the end of the day,
i.e. once a day payment to/from each account, which is the value of shipments minus
the value of receipts.

The main and overriding technology that drives integration development is SOA
(service-oriented architecture) [2]. SOA uses XML Web services as its implementa-
tion principle and introduces a new logical layer within the distributed computing
platform. This new Integration layer defines a common point of integration across
applications and across enterprises. In effect, SOA blurs the distinction between inte-
gration and new distributed applications (because the reason for calling a service on
the Integration layer is transparent to SOA – and the reason could be an integration or
brand new application development).

Moreover, and not out of context, SOA blurs the distinction between a business
process and a technology process (one no longer exclusively drives the other).

3 Classifying Integration

Integration projects are as much about the strategy as about the technology. As such, they
have many dimensions and various mixing of these dimensions is needed to ensure the
project’s business objectives and to choose the appropriate technology. Tables 1 and 2
provide two different two-dimensional viewpoints on integration projects.

Table 1. Two-dimensional view on integration projects

 Internal
integration

External integration
 SOA

Dyadic
integration

File sharing
Remote

procedures

EDI
Web services

Hub
integration

Shared database
Workflows

Message brokers
Orchestration

6 L.A. Maciaszek

Table 2. Another two-dimensional view on integration projects

 Synchronous
integration

Asynchronous
integration

Data
integration

Data replication
Portal sharing

File transfer
Shared database

Process
integration

 SOA

Remote
procedures
Workflows

Messaging

The two criteria used in Table 1 are the integration business target and the number

of integration participants. The business target can be the enterprise itself (internal
integration) or another business (external B2B (business-to-business) integration)
(cp.[4]). The number of participants can be just two parties in a point-to-point supply
chain (dyadic integration) or more than two parties in a network structure (hub inte-
gration) (cp. [1]).

The two criteria used in Table 2 are the degree of coupling and the integration tar-
get (approach). The degree of coupling distinguishes between loosely coupled and
tight coupled integration (cp. [7]). The integration target defines the spectrum of ap-
proaches to integration – from integration through data, via integration through inter-
faces, to direct integration of executing processes.

The cells in both tables serve the purpose of providing examples of integration so-
lutions. The simplest solutions referred to in Table 1 are file sharing and remote pro-
cedures. These two solutions are typically used in internal dyadic integration, but they
are applicable in other more complicated integration projects as well.

Integration by means of file sharing means that files are transferred between appli-
cations. The integration effort concentrates merely on re-formatting the files to suit
the receiving application.

Integration by means of remote procedures is based on an old piece of wisdom that
data should be encapsulated by procedures. Accordingly, to access the data in another
application, the client application invokes remotely appropriate procedures, which in
turn supply the data.

Two other internal integration solutions mentioned in Table 1 are shared database
and workflows. Although shown as examples of hub integration, they are often used
in simpler dyadic integrations. Also, when the business conditions are right, they can
be used in external integration.

Any database is by definition shared, so talking about shared database emphasizes
only the point that the database is used as an integration solution. Because a database
can be shared by any number of users and applications, a shared database is an obvi-
ous vehicle for hub integration on the level of data.

The hub integration on the level of processes can be based on workflows. A work-
flow is a distributed business transaction governed by a process management function
that ensures the integrated flow of execution of transactional tasks between many sys-
tems/applications.

The last column in Table 1 refers to external integration. Modern external integra-
tion solutions are based on SOA. A primitive forerunner of SOA as a technology for
external integration has been EDI (Electronic Data Interchange) – a set of computer

 Adaptive Integration of Enterprise and B2B Applications 7

interchange standards for business documents. Web services are also defined by a
collection of protocols and standards used for exchanging data between applications
or enterprises. However, they make themselves available over the Internet for integra-
tion with applications and systems and they can be part of SOA infrastructure.

Message brokers and orchestration engines are used for hub external integration.
Message broker is a layer of software between applications integrated within the hub.
It is a SOA component that ensures data transformation, merging and enrichment so
that applications in the hub can communicate and collaborate.

Orchestration is a value-added component to encapsulate and execute new busi-
ness process logic. It implements workflows that involve collaborators in the hub.
Integration solutions obtained via orchestration engines are often classified as virtual
applications [2].

Integration solutions listed in Table 1 can be analyzed from other angles, including
the viewpoints taken in Table 2, namely degree of coupling and integration targets. In
general, data integration is more aligned with (better suited for) loosely coupled inte-
gration. This is because data can be easily put aside for later use. Conversely, process
integration is more aligned with tightly couple integration.

Data replication, portal sharing, and messaging are the three integration solutions
listed in Table 2 but missing in Table 1. Data replication is classified as synchronous
integration because replication servers of databases can be programmed to perform
replications continuously and replicate data as the primary data is changing.

Probably slightly controversially, portal sharing is classified in Table 2 as syn-
chronous data integration. Portals are web sites or applications that provide access to
a number of sources of information and facilities (portlets). They aggregate informa-
tion from multiple sources into a single display. The display of information is syn-
chronous but no any sophisticated process-level communication between portlets is
normally assumed – hence, data integration.

Messaging is the primary technology for asynchronous process integration [3].
Based on the Publish/Subscribe model, messaging frameworks guarantee reliable de-
livery of messages in program-to-program communication while recognizing that
synchronous communication with remote applications is difficult to achieve (yet
asynchronous communication is frequently acceptable).

4 Assuring Adaptive Integration

Building adaptiveness into enterprise and e-business systems engages all three tradi-
tional levels of management – strategic, tactical and operational. From the system’s
development perspective, the strategic level refers to the architectural solutions, the
tactical level to the engineering decisions, and the operational level to the project con-
trolling tasks. These three levels of management are used in the conventional
top-down fashion when software is developed. We can say that system architecture
defines adaptiveness, engineering activities deliver adaptiveness, and controlling tasks
verify the existence of adaptiveness in an implemented system.

4.1 Defining Adaptiveness

A well known truth, unfortunately frequently forgotten in practice, is that the neces-
sary condition for assuring adaptive integration (and any large software development

8 L.A. Maciaszek

for that matter) is that the integration adheres to strict and transparent architectural
design. The architectural design itself must conform to a meta-architecture that is
known to ensure the quality of adaptiveness in any compliant complex system. Meta-
architecture determines the layers of the (necessary) hierarchical structure in a com-
plex system and specifies allowed dependencies between and inside the layers.

Fig. 2. PCBMER-A meta architecture

 Adaptive Integration of Enterprise and B2B Applications 9

There are many meta-architectures that in principle can support the quality of adap-
tiveness. However, most meta-architectures are undefined for that purpose. To be
useful, a meta-architecture must classify possible dependencies according to their
ripple effect, i.e. adverse chain reactions on client objects once a supplier object is
modified in any way [6]. It must determine metrics to compute cumulative dependen-
cies for particular designs in order to be able to select a design that minimizes de-
pendencies

[7] It must then offer guidelines, principles and patterns, which assist system de-
velopers in their quest to adhere to the architectural design while not “binding their
hands and brains” too much [8].

The pivotal meta-architecture, which we advocate, is called PCBMER. The
PCBMER framework defines six hierarchical layers of software objects – Presenta-
tion, Controller, Bean, Mediator, Entity and Resource.

The PCBMER meta-architecture has evolved from earlier frameworks [8] and has
aimed at new development projects. We believe, however, that PCBMER can easily
accommodate to integration projects. That belief is consistent with the earlier discus-
sion that the demarcation line between development and integration is blurred and
that any more sophisticated process-level integration is really a form of new applica-
tion development. Nevertheless, PCBMER requires some extensions to account in the
meta-architecture for the integration layer.

An important starting point for any extensions of PCBMER is that we can only en-
sure the quality of adaptiveness in the software that remains under our control. We
can then only trust that parties that our software integrates with will also be adaptive.
With this understanding in mind, we can distinguish between two meta-architectures
that apply in integration projects.

The first integration meta-architecture applies to application-level integrations.
This architecture subsumes also data-level integration. We call this architecture
PCBMER-A (where A signifies an application-centric integration). Figure 2 shows a
high-level view of the PCBMER-A meta-architecture.

The second integration meta-architecture applies to process-level integrations, pro-
viding support for inter-application and inter-organization communication. We call
this architecture PCBMER-U (where U refers to a utility service that such meta-
architectural solutions promise to deliver). Figure 3 is a high-level view of the
PCBMER-U meta-architecture.

Figures 2 and 3 illustrate that the integration meta-architectures retain the Core
PCBMER framework. Dependencies (dotted arrowed lines) between the core pack-
ages remain unchanged in integration projects. Hence, for example, Presentation de-
pends on Controller and on Bean, and Controller depends on Bean. Note that the
PCBMER hierarchy is not strictly linear and a higher-layer can have more than one
adjacent layer below (and that adjacent layer may be an intra-leaf, i.e. it may have no
layers below it).

The Bean package represents the data classes and value objects that are destined
for rendering on user interface. Unless entered by the user, the bean data is built from
the entity objects (the Entity package). The Core PCBMER framework does not spec-
ify or endorse if access to Bean objects is via message passing or event processing as
long as the Bean package does not depend on other packages.

10 L.A. Maciaszek

Fig. 3. PCBMER-U meta architecture

The Presentation package represents the screen and UI objects on which the beans
can be rendered. It is responsible for maintaining consistency in its presentation when
the beans change. So, it depends on the Bean package. This dependency can be real-
ized in one of two ways – by direct calls to methods (message passing) using the pull
model or by event processing followed by message passing using the push model (or
rather push-and-pull model)

The Controller package represents the application logic. Controller objects respond
to the UI requests that originate from Presentation and that are results of user interac-
tions with the system. In a programmable GUI client, UI requests may be menu or
button selections. In a web browser client, UI requests appear as HTTP Get or Post
requests.

The Entity package responds to Controller and Mediator. It contains classes repre-
senting “business objects”. They store (in the program’s memory) objects retrieved
from the database or created in order to be stored in the database. Many entity classes
are container classes.

 Adaptive Integration of Enterprise and B2B Applications 11

The Mediator package establishes a channel of communication that mediates
between Entity and Resource classes. This layer manages business transactions, en-
forces business rules, instantiates business objects in the Entity package, and in gen-
eral manages the memory cache of the application. Architecturally, Mediator serves
two main purposes. Firstly, to isolate the Entity and Resource packages so that
changes in any one of them can be introduced independently. Secondly, to mediate
between the Controller and Entity/Resource packages when Controller requests data
but it does not know if the data has been loaded to memory or it is available in the
database or it can be obtained from external sources.

The Resource package is responsible for all communications with external persis-
tent data sources (databases, web services, etc.). This is where the connections to the
database and SOA servers are established, queries to persistent data are constructed,
and the database transactions are instigated.

For application-centric integration projects (Figure 2), the PCBMER-A meta-
architecture enriches the Resource package with the RequiredInterfaces component. This
component provides access to external applications. Although the component is called
RequiredInterfaces, the access is not restricted to invoking Java-style interfaces imple-
mented in collaborating applications. Any other integration levels are assumed and al-
lowed, such as direct access to data, access to data encapsulated by accessor methods or
by stored procedures, access to data rendered in portals, or access to web services.

For utility-centric integration projects (Figure 3), the PCBMER-U meta-architecture is
explicitly extended with new “integration automation” components – Broker, Orchestra-
tion, and Service Registry. The first two implement the automation logic and depend on
the utlity’s application logic in Controller. Service Registry implements the “service dis-
covery” and depends on the utility’s business logic in Mediator. All access to the integra-
tion layers of participating applications originates from either Mediator or Resource.

4.2 Delivering Adaptiveness

Once defined in a meta-architecture, an adaptive solution can be delivered through engi-
neering work. It is the responsibility of engineers to ensure that architectural advantages
are retained in the engineered product. The task is not easy because as always “the devil
is in the detail”. To do the job, the engineers must be equipped with principles, patterns,
implementation techniques, etc. that instrument the meta-architectural advantages and
that explicitly address the adaptiveness criteria in the solution.

The Core PCBMER framework has a number of advantages resulting in minimization
of dependencies. The main advantage is the separation of concerns between packages
allowing modifications within one package without affecting the other (independent)
packages or with a predictable and manageable effect on the other (dependable) pack-
ages. For example, the Presentation package that provides a Java application UI could be
switched to a mobile phone interface and still use the existing implementation of Control-
ler and Bean packages. That is, the same pair of Controller and Bean packages can sup-
port more than one Presentation UI at the same time.

The second important advantage is the elimination of cycles between dependency
relationships and the resultant six-layer hierarchy with downward only dependencies.
Cycles would degenerate a hierarchy into a network structure. Cycles are disallowed
both between PCBMER packages and within each PCBMER package.

12 L.A. Maciaszek

The third advantage is that the framework ensures a significant degree of stability.
Higher layers depend on lower layers. Therefore, as long as the lower layers are stable
(i.e. do not change significantly, in particular in interfaces), the changes to the higher
layers are relatively painless. Recall also that lower layers can be extended with new
functionality (as opposed to changes to existing functionality), and such extensions
should not impact on the existing functionality of the higher layers.

The Core PCBMER meta-architecture enforces other properties and constraints
that are not necessarily directly visible in Figures 2 and 3. Below is the list of the
most important PCBMER engineering principles (cp. Maciaszek and Liong, 2005):

Downward Dependency Principle (DDP)
The DDP states that the main dependency structure is top-down. Objects in higher layers de-
pend on objects in lower layers. Consequently, lower layers are more stable than higher layers.
Interfaces, abstract classes, dominant classes and similar devices should encapsulate stable
packages so that they can be extended when needed.

Upward Notification Principle (UNP)
The UNP promotes low coupling in a bottom-up communication between layers. This can be
achieved by using asynchronous communication based on event processing. Objects in higher
layers act as subscribers (observers) to state changes in lower layers. When an object (publisher)
in a lower layer changes its state, it sends notifications to its subscribers. In response, subscrib-
ers can communicate with the publisher (now in the downward direction) so that their states
are synchronized with the state of the publisher.

Neighbor Communication Principle (NCP)
The NCP demands that a package can only communicate directly with its neighbor package as
determined by direct dependencies between packages. This principle ensures that the system
does not disintegrate to a network of intercommunicating objects. To enforce this principle,
the message passing between non-neighboring objects uses delegation or forwarding (the for-
mer passes a reference to itself; the latter does not). In more complex scenarios, a special ac-
quaintance package can be used to group interfaces to assist in collaboration that engages dis-
tant packages.

Explicit Association Principle (EAP)
The EAP visibly documents permitted message passing between classes. This principle rec-
ommends that associations are established on all directly collaborating classes. Provided the
design conforms to PCBMER, the downward dependencies between classes (as per DDP) are
legitimized by corresponding associations. Associations resulting from DDP are unidirectional
(otherwise they would create circular dependencies). It must be remembered, however, that not
all associations between classes are due to message passing. For example, both-directional asso-
ciations may be needed to implement referential integrity between classes in the entity package.

Cycle Elimination Principle (CEP)
The CEP ensures that circular dependencies between layers, packages and classes within pack-
ages are resolved. Circular dependencies violate the separation of concerns guideline and are
the main obstacle to reusability. Cycles can be resolved by placing offending classes in a new
package created specifically for that purpose or by forcing one of the communication paths in
the cycle to communicate via an interface.

 Adaptive Integration of Enterprise and B2B Applications 13

Class Naming Principle (CNP)
The CNP makes it possible to recognize in the class name the package to which the class be-
longs. To this aim, each class name is prefixed in PCBMER with the first letter of the package
name (e.g. EInvoice is a class in the Entity package). The same principle applies to interfaces.
Each interface name is prefixed with two capital letters – the first is the letter “I” (signifying
that this is an interface) and the second letter identifies the package (e.g. ICInvoice is an inter-
face in the Controller package).

Acquaintance Package Principle (APP)
The APP is the consequence of the NCP. The acquaintance package consists of interfaces that
an object passes, instead of concrete objects, in arguments to method calls. The interfaces can
be implemented in any PCBMER package. This effectively allows communication between
non-neighboring packages while centralizing dependency management to a single acquaintance
package.

4.3 Verifying Adaptiveness

The PCBMER meta-architecture together with the seven principles defines a desired
model to produce adaptive systems. However, the meta-architecture is a theoretical
objective which may or may not be fulfilled in practice. Also, it is possible to have
multiple designs (and corresponding implementations), all of which conforming to the
meta-architecture, yet exhibiting various levels of “goodness”. What we need is to be
able to measure how “good” particular software solution is and whether or not it con-
forms to the meta-architecture. The overall task is called the roundtrip architectural
modelling in [5].

Therefore, to verify adaptiveness in an integration solution, we need to define
structural complexity metrics able to compute cumulative dependencies between the
solution’s implementation objects. The dependencies can be defined on messages,
events, classes, components, etc. [7].

From the perspective of a system architect and maintainer, the dependencies be-
tween classes provide the most valuable metric of system complexity and adaptive-
ness. It is, therefore, important to make these dependencies explicit and to uncover
any hidden dependencies. The Cumulative Class Dependency (CCD) is a measure of
the total number of class dependencies in a system.

DEFINITION: Cumulative Class Dependency (CCD) is the total “adaptiveness”
cost over all classes Ci{i=1,…,n) in a system of the number of classes Cj(j<=1,…,n) to be
potentially changed in order to modify each class Ci.

The CCD definition is intentionally simple. In particular it does not, by itself, judge
the quality of the design. Its value is in comparisons between two or more designs for
the same system. To this aim, the CCD computation strives to validate if a particular
design conforms to a chosen meta-architecture (such as PCBMER). Uncovering a
class dependency that invalidates the architectural framework leads to the only sensi-
ble assumption that the required dependency structure in the system is broken. This in
turn means that any dependency is possible and the system adaptiveness has eluded
management controls.

The calculation of CCD for a particular design starts by assuming the adherence to the
architectural framework. If the framework is found to be broken, the CCD is calculated
as if each class depended on any other class in the system. Such worst-scenario CCD can

14 L.A. Maciaszek

be computed using a probability theory method called combinations counting rule. It
computes the number of different combinations of pairs of dependent classes which can
be formed from the total number of classes in the design.

With the above in mind, the generic cumulative class dependency formula for the
Core PCBMER is shown in the equation below (this is a generic formula and other
formulas may apply to specific PCBMER architectures derived from the Core frame-
work). The formula assumes that access to packages is encapsulated by hub objects
(Maciaszek, 2006). These could be Java-style interfaces, dominant classes, and simi-
lar devices, which force single channels of communication between packages.

∑∑
=

+
=

+−=
root

j
j

root

i

ii
hubPCBMER p

oo
CCD

1
1

1 2

)1(

where:

o is the number of objects in each package i including any hub objects,

1+jp
is the number of objects in each directly adjacent package above any leave

package minus any hub object (this computes the number of potential downward
paths to all hub objects in the adjacent packages),

CCDhubPCBMER is a cumulative class dependency in a hub hierarchy representing
the PCBMER meta-architecture.

Note that the formula accommodates the fact that the PCBMER framework permits
a lower-layer package to be communicated from more than one higher-layer package.
These higher-layer packages are considered to be “directly adjacent”, hence the for-
mula applies as stands. Note that because only downward dependencies are allowed,
the communication from higher-layer packages retains the hierarchical properties of
the PCBMER framework.

The CCD equation ensures polynomial growth of dependencies between architectural
layers represented as packages, while allowing exponential growth of class dependencies
within layers. However, the exponential growth can be controlled by grouping classes
within a layer into nested packages (as packages can contain other packages). The com-
munication between nested packages can then be performed using hubs.

Measuring adaptiveness of designs and programs cannot be done manually. Maci-
aszek and Liong (2003) describes a tool, called DQ (Design Quantifier), which is able
to analyse any Java program, establish its conformance with a chosen adaptive meta-
architecture, compute complete set of dependency metrics, and visualize the com-
puted values in UML class diagrams.

Although not supported by DQ, tools like DQ should be able to visualize dependen-
cies by producing call graphs. Ideally, a call graph could be a variant of a UML sequence
diagram. A call graph can be used for the change impact analysis and to answer “what-if”
questions such as “which methods are affected if a particular method is modified?”

5 Summary

The purpose and all-overriding importance of achieving the quality of adaptiveness in
software is in ensuring that the software becomes a long-lasting business asset, not

 Adaptive Integration of Enterprise and B2B Applications 15

just business cost. This observation is particularly true for integration projects, which
by definition tend to deliver software with greater competitive advantages.

In [6] and elsewhere, we explained the interplay between software complexity and
adaptiveness, showed that hierarchical structures with hubs minimize complexity,
talked about lessons from studying structure and behaviour of living systems, pro-
vided classifications of object dependencies, and introduced the PCBMER meta-
architecture.

In this paper, we extended earlier work related to new application developments to
the software integration projects. We argued that the demarcation line between new
development and integration is blurry and that the similar strategies and principles of
software production apply. In particular, the Core PCBMER meta-architecture can be
successfully adapted to integration projects and we showed necessary architectural
extensions. We addressed software engineering practices and technologies that could
guarantee the compliance of an implemented software system with the PCBMER
meta-architecture and its principles. Finally, we talked about reverse-engineering veri-
fication procedures to substantiate in metrics the level of compliance of an integration
solution with the adaptivity criteria.

References

1. Christiaanse, E.: Performance Benefits Through Integration Hubs. Comm. ACM 48(4), 95–
100 (2005)

2. Erl, T.: Service-Oriented Architecture. A Field Guide to Integrating XML and Web Ser-
vices, p. 536. Prentice Hall, Englewood Cliffs (2004)

3. Hohpe, G., Woolf, B.: Enterprise Integration Patterns, p. 650. Addison-Wesley, Reading
(2003)

4. Linthicum, D.S.: Next Generation Application Integration. From Simple Information to
Web Services, p. 488. Addison-Wesley, Reading (2004)

5. Maciaszek, L.A.: Roundtrip Architectural Modeling. In: Hartmann, S., Stumper, M. (eds.)
Australian Computer Science Communications, Newcastle, Australia, January 30 – Febru-
ary 4, 2005, vol. 27(6), pp. 17–23 (2005) (invited paper)

6. Maciaszek, L.A.: From Hubs Via Holons to an Adaptive Meta-Architecture – the AD-HOC
Approach. In: Proceedings IFIP Working Conference on Software Engineering Techniques
- SET 2006, Warsaw, Poland, October 17-20, 2006, p. 13 (to appear, 2006)

7. Maciaszek, L.A., Liong, B.L.: Designing Measurably-Supportable Systems. In: Niedzielska,
E., Dudycz, H., Dyczkowski, M. (eds.) Advanced Information Technologies for Manage-
ment, Research Papers No 986. pp. 120–149, Wroclaw University of Economics (2003)

8. Maciaszek, L.A., Liong, B.L.: Practical Software Engineering. A Case-Study Approach,
Harlow England, p. 864. Addison-Wesley, Reading (2005)

Ambient Intelligence: Basic Concepts and Applications

Juan Carlos Augusto

School of Computing and Mathematics, University of Ulster, Jordanstown, U.K.
jc.augusto@ulster.ac.uk

Abstract. Ambient Intelligence is a multi-disciplinary approach which aims to
enhance the way environments and people interact with each other. The ultimate
goal of the area is to make the places we live and work in more beneficial to
us. Smart Homes is one example of such systems but the idea can be also used
in relation to hospitals, public transport, factories and other environments. The
achievement of Ambient Intelligence largely depends on the technology deployed
(sensors and devices interconnected through networks) as well as on the intelli-
gence of the software used for decision-making. The aims of this article are to
describe the characteristics of systems with Ambient Intelligence, to provide ex-
amples of their applications and to highlight the challenges that lie ahead, espe-
cially for the Software Engineering and Knowledge Engineering communities.

Keywords: Ambient Intelligence, Software Engineering, Knowledge Engineer-
ing, Sensor Networks, Smart Homes.

1 Introduction

The steady progress in technology have not only produced a plethora of new devices and
spread computing power into various levels of our daily lives, it is also driving a trans-
formation on how society relates to computer science. The miniaturization process in
electronics has made available a wide range of small computing devices which can now
help us when we wash clothes and dishes, cook our meals, and drive our cars. Inspired
on those successful applications which are now embedded in our daily lives many new
technological developments are spreading little computing devices everywhere possible
(see as an example recent developments on RFID technology [1]). Several new devices
of that kind are being investigated and produced every year. These developments are
being quickly absorbed by the research community (see for example recent reports on
[2,3]) and by several leading companies around the world (see for example [4]).

This richness in technology and computer power has been continuously progressing
since the very inception of computer science. First a machine was shared by many
highly trained programmers. Then it became possible in many countries around the
world that many people, not necessarily with a high level of training, will have access to
one PC in an individual basis. Now many people can have access to several computing
devices like a PC, a laptop and a PDA at work plus a PC at home and various smaller
processing units embedded in electro-domestic appliances. All seems to indicate this
trend will continue. Slowly systems are being designed in such a way that people do
not need to be a computer specialist to benefit from computing power. This technical

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 16–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ambient Intelligence: Basic Concepts and Applications 17

possibility is being explored in an area called Ambient Intelligence (AmI) where the
idea of making computing available to people in a non-intrusive way is at the core of
its values. The benefit of an AmI system is measured by how much can give to people
whilst minimizing explicit interaction. The aim is to enrich specific places (a room, a
building, a car, a street) with computing facilities which can react to people’s needs and
provide assistance.

Given the evolution of markets and industry people is now more willing to accept
technologies participating and shaping their daily life. At the same time there are im-
portant driving forces at political level which create a fertile terrain for this to happen.
An important example of this is the decentralization of health care and development
of health and social care assistive technologies. For various reasons governments and
health professionals are departing away from the hospital-centric health care system
enabling this shift of care from the secondary care environment to primary care. Subse-
quently, there is an effort to move away from the traditional concept of patients being
admitted into hospitals rather to enable a more flexible system whereby people are cared
for closer to home, within their communities. Smart homes are one such example of a
technological development which facilitates this trend of bringing the health and social
care system to the patient as opposed to bringing the patient into the health system.

The aim of this paper is to describe more specifically the relationship in between
AmI and related areas (Section 2), to describe some possible scenarios of application
(Section 6), and finally to highlight the technical difficulties and opportunities laying
ahead (Section 7) which, in the view of the author, will shape the course of important
areas of computer science (Section 8).

2 Ambient Intelligence

“Ambient Intelligence” (AmI) [5,6] is growing fast as a multi-disciplinary approach
which can allow many areas of research to have a significant beneficial influence into
our society. The basic idea behind AmI is that by enriching an environment with tech-
nology (mainly sensors and devices interconnected through a network), a system can
be built to take decisions to benefit the users of that environment based on real-time
information gathered and historical data accumulated. AmI has a decisive relationship
with many areas in computer science. The relevant areas are depicted in Figure 1.

Here we must add that whilst AmI nourishes from all those areas, it should not be
confused with any of those in particular. Networks, sensors, interfaces, ubiquitous or
pervasive computing and AI are all relevant but none of them conceptually covers AmI.
It is AmI which puts together all these resources to provide flexible and intelligent
services to users acting in their environments.

AmI is aligned with the concept of the “disappearing computer” [7,8]:

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.”

The notion of a disappearing computer is directly linked to the notion of “Ubiquitous
Computing” [9], or “Pervasive Computing” [10] as IBM called it later on. Some au-
thors equate “Ubiquitous Computing” and “Pervasive Computing” with “Ambient In-
telligence”. Here we argue that Ubiquitous and Pervasive systems are different as they

18 J.C. Augusto

Fig. 1. Relationship between AmI and other areas

emphasize the physical presence and availability of resources and miss a key element:
the explicit requirement of “Intelligence”. This we think, is the ground of Artificial
Intelligence (AI) [11] and should not be ignored. Here we refer to AI in a broad sense,
encompassing areas like agent-based software and robotics. What matters is that AmI
systems provide flexibility, adaptation, anticipation and a sensible interface in the inter-
est of human beings. The same observations can be made about alternatives to “Ubiq-
uitous” or “Pervasive” like the most recent, and less used, term: “Everyware” [12].

This paper will be based in a more suitable definition which expands Raffler’s [13]
to emphasize Intelligence as a fundamental element of an AmI system:

“A digital environment that proactively, but sensibly, supports people in their
daily lives.”

In order to be sensible, a system has to be intelligent. That is how a trained assistant, e.g.
a nurse, typically behaves. It will help when needed but will restrain to intervene unless
is necessary. Being sensible demands recognizing the user, learning or knowing her/his
preferences and the capability to exhibit empathy with the user’s mood and current
overall situation.

Although the term Ambient Intelligence will be used in this article to describe this
area of research in Europe, the reader should be aware that similar developments on
USA and Canada are usually referred as “Smart Environments” or “Intelligent Envi-
ronments”. We keep here the European denomination as it emphasizes the intelligence
factor of these systems as opposed to the physical infrastructure.

Important for Ubiquitous/Pervasive computing are the “5Ws” (Who, Where, What,
When and Why) principle of design [14] :

Ambient Intelligence: Basic Concepts and Applications 19

Who: the identification of a user of the system and the role that user plays within
the system in relation to other users. This can be extended to identifying other
important elements like pets, robots and objects of interest within the environment.

Where: the tracking of the location where a user or an object is geographically located
at each moment during the system operation. This can demand a mix of technolo-
gies, for example technology that may work well indoors may be useless outdoors
and viceversa.

When: the association of activities with time is fundamental to build a realistic picture
of a system’s dynamic. For example, users, pets and robots living in a house will
change location very often and knowing when those changes happened and for
how long they lasted are fundamental to the understanding of how an environment
is evolving.

What: the recognition of activities and tasks users are performing is fundamental in
order to provide appropriate help if required. The multiplicity of possible scenarios
that can follow an action makes this very difficult. Spatial and temporal awareness
help to achieve task awareness.

Why: the capability to infer and understand intentions and goals behind activities is
one of the hardest challenges in the area but with no doubt a fundamental one
which allows the system to anticipate needs and serve users in a sensible way.

An important aspect of AmI has to do with interaction. On one side there is a moti-
vation to reduce the human-computer interaction (HCI) [15] as the system is supposed
to use its intelligence to infer situations and user needs from the recorded activities, as
if a passive human assistant were observing activities unfold with the expectation to
help when (and only if) required. On the other hand, a diversity of users may need or
voluntarily seek direct interaction with the system to indicate preferences, needs, etc.
HCI has been an important area of computer science since the inception of computing
as an area of study. Today, with so many gadgets incorporating computing power of
some sort, HCI continues to thrive as an important area. An example of an attempt to
conciliate both worlds as been reported at: [16] where image processing is done locally
inside the context where images are gathered and then a text-based summary is used for
diagnosis of the situation. This allows the use of a rich source of information whilst at
the same time retaining privacy.

3 Smart Homes

An example of an environment enriched with AmI is a “Smart Home”. See for example
Figure 2 for a depiction of a basic layout and [17,18] for more technical details on how
this Smart Homes can operate intelligently.

By Smart Home here we understand a house equipped to bring advanced services to
its users. Naturally, how smart a house should be to qualify as a Smart Home is, so far,
a subjective matter. For example, a room can have a sensor to decide when its occupant
is in or out and on that basis keep lights on or off. However, if sensors only rely on
movement and no sensor in, say, the door can detect when the person left, then a person
reading and keeping the body in a resting position can confuse the system which will
leave the room dark. The system will be confusing absence of movement with absence

20 J.C. Augusto

Contexts of Interest Interaction Rules

Fig. 2. A Smart Home as an AmI instance

of the person, that inference will certainly not be considered as particularly “bright”,
despite the lights.

Technology available today is rich. Several artifacts and items in a house can be en-
riched with sensors to gather information about their use and in some cases even to act
independently without human intervention. Some examples of such devices are elec-
trodomestics (e.g., cooker and fridge), household items (e.g., taps, bed and sofa) and
temperature handling devices (e.g., air conditioning and radiators). Expected benefits
of this technology can be: (a) increased safety (e.g., by monitoring lifestyle patterns or
the latest activities and providing assistance when a possibly harmful situation is de-
veloping), (b) comfort (e.g., by adjusting temperature automatically), and (c) economy
(e.g., controlling the use of lights). There is a plethora of sensing/acting technology,
ranging from those that stand alone (e.g., smoke or movement detectors), to those fitted
within other objects (e.g., a microwave or a bed), to those that can be worn (e.g., shirts
that monitor heart beat). For more about sensors and their applications the reader may
like to consider [1], and [2].

Recent applications include the use of Smart Homes to provide a safe environment
where people with special needs can have a better quality of life. For example, in the
case of people at early stages of senile dementia (the most frequent case being elderly
people suffering from Alzheimer’s disease) the system can be tailored to minimize
risks and ensure appropriate care at critical times by monitoring activities, diagnos-
ing interesting situations and advising the carer. There are already many ongoing aca-
demic research projects with well established Smart Homes research labs in this area,
for example Domus [19], Aware Home [20], MavHome [21], and Gator Tech Smart
Home [22].

Ambient Intelligence: Basic Concepts and Applications 21

4 Other Environments and Applications for AmI

Other applications are also feasible and relevant and the use of sensors and smart de-
vices can be found in:

– Health-related applications. Hospitals can increase the efficiency of their services
by monitoring patients’ health and progress by performing automatic analysis of
activities in their rooms. They can also increase safety by, for example, only allow-
ing authorized personnel and patients to have access to specific areas and devices.

– Public transportation sector. Public transport can benefit from extra technology in-
cluding satellite services, GPS-based spatial location, vehicle identification, image
processing and other technologies to make transport more fluent and hence more
efficient and safe.

– Education services. Education-related institutions may use technology to track stu-
dents progression on their tasks, frequency of attendance to specific places and
health related issues like advising on their diet regarding their habits and the class
of intakes they opted for.

– Emergency services. Safety-related services like fire brigades can improve the re-
action to a hazard by locating the place more efficiently and also by preparing the
way to reach the place in connection with street services. The prison service can
also quickly locate a place where a hazard is occurring or is likely to occur and
prepare better access to it for security personnel.

– Production-oriented places. Production-centred places like factories can self-organi-
ze according to the production/demand ratio of the goods produced. This will de-
mand careful correlation between the collection of data through sensors within the
different sections of the production line and the pool of demands via a diagnostic
system which can advice the people in charge of the system at a decision-making
level.

Well-known leading companies have already invested heavily in the area. For ex-
ample, Philips [23] has developed Smart Homes for the market including innovative
technology on interactive displays. Siemens [24] has invested in Smart Homes and in
factory automation. Nokia [25] also has developments in the area of communications
where the notion of ambience is not necessarily restricted to a house or a building. VTT
[26] has developed systems which advise inhabitants of Smart Homes on how to modify
their daily behaviour to improve their health.

In the next section we give one step in the direction of identifying some of the im-
portant issues and how to consider them explicitly within a system.

5 System Flow

An AmI system can be built in many ways. Mainly they will need sensors and devices to
surround occupants of an environment with technology (we can call this an “e-bubble”)
that can provide accurate feedback to the system on the different contexts which are
continuously developing. The information collected has to be transmitted by a network
and pre-processed by what is called middleware. Finally, in order to make decision-
making easier and more beneficial to the occupants of the environment the will have

22 J.C. Augusto

a higher-level layer of reasoning which will accomplish diagnosis and advice or assist
other humans which have the final responsibility on the operation of the system. Some
elements that may be included are for example an Active Database where the events
are collected to record sensors that have been stimulated and a reasoner which will
apply spatio-temporal reasoning and other techniques to take decisions [27]. A typical
information flow for AmI systems is depicted in Figure 3.

Fig. 3. Information flow in AmI systems

As the interactors perform their tasks, some of these tasks will trigger sensors and
those in turn will activate the reasoning system. Storing frequency of activities and
decisions taken during relevant parts of the system’s life time allow the system to learn
information which is useful to decision makers, e.g., for doctors and nurses to decide if
a change in the medication of a patient suffering Alzheimer’s disease may be needed. It
also allows learning which can improve the system itself, e.g., to make interaction rules
more personalized and useful for a particular person. For example, peoples’ habits in
winter are different than in summer in terms of what is the usual time to get up or the
time they spend watching TV or sleeping.

Lets examine in the following section what the possible intelligent environments can
be. The reader more interested in a formal treatment of AmI concepts is referred to [28]
where some of the following scenarios are formalized with regards to an abstract AmI
architecture.

6 AmI Scenarios

AmI systems with the general architecture described in the previous section can be de-
ployed in many possible environments. Below we describe some of these environments
in order to better illustrate the scope of the idea.

Ambient Intelligence: Basic Concepts and Applications 23

Scenario 1: An instance of the concept of Ambient Intelligence is a Smart Home. Here
an AmI specification may include the following details. The meaningful environment is
the house, including the backyard and a portion of the front door as these areas also have
sensors. Objects are plants, furniture, and so on. Figure 2 have three interactors depicted
and therefore I has three elements: a person in the bedroom, a cat, and a floor cleaning
robot in the living room. There are also multiple sensors in S, movement sensors, pull
cord switch, smoke detector, doorbell detector, pressure pad, plus switch sensors for
taps, a cooker and a TV. In addition, there is a set of actuators, as the taps, cooker and
TV also have the capacity to be turned on and off without human assistance. Medical
devices can also exhibit autonomous behaviour by making recommendations before
and after their usage. Contexts of interest can be “cooker is left on without human
presence in the kitchen for more than 10 minutes”, “occupant is still sleeping after
9AM”. Interaction rules specified may consider that “if occupant is in bed and is later
than 9AM and contact has been attempted unsuccessfully then carer should be notified”.

Scenario 2: Let us consider a specific room of a hospital as the environment, whit
a patient monitored for health and security reasons. Objects in the environment are
furniture, medical equipment, specific elements of the room like a toilet and a window.
Interactors in this environment will be the patient, relatives and carers (e.g., nurses and
doctors). Sensors can be movement sensors and wrist band detectors for identifying who
is entering or leaving the room and who is approaching specific areas like a window or
the toilet. Actuators can be microphones within the toilet to interact with the patient in
an emergency. Contexts of interest can be “the patient has entered the toilet and has not
returned after 20 minutes” or “frail patient left the room”. Interaction rules specified in
IR can consider, for example, that “if patient is leaving the room and status indicates
that this is not allowed for this particular patient then nurses should be notified”.

Scenario 3: Assume a central underground coordination station is equipped with loca-
tion sensors to track the location of each unit in real-time. Based on the time needed to
connect two locations with sensors, the system can also predict the speed of each unit.
Examples of objects in this environment are tracks and stations. Interactors are trains,
drivers and command centre officers. Sensors are used for identification purposes based
on ID signals sent from the train. Other signals can be sent as well, e.g., emergency
status. Actuators will be signals coordinating the flow of trains and messages that can
be delivered to each unit in order to regulate their speed and the time they have to spend
at a stop. Contexts of interest can be “delays” or “stopped train”. One interaction rule
can be “if line blocked ahead and there are intermediate stops describe the situation to
passengers”.

Scenario 4: Lets assume a school where students are monitored to best advise on bal-
ancing their learning experience. The objects within a classroom or play ground are
tables and other available elements. The interactors are students and teachers. The sen-
sors will identify who is using what scientific kit and that in turn will allow monitoring
of how long students are involved with a particular experiment. Actuators can be rec-
ommendations delivered to wristwatch-like personalized displays. Contexts of interest
can be “student has been with a single experimentation kit for too long” or “student has
not engaged in active experimentation”. The first context will trigger a rule “if student

24 J.C. Augusto

has been interacting with one single kit for more than 20 minutes advise the student to
try the next experiment available” whilst the second one can send a message to a tutor,
such as “if student S has not engaged for more than 5 minutes with an experiment then
tutor has to encourage and guide S”.

Scenario 5: When a fire brigade has to act then the environment can be a city or a neigh-
borhood. Streets can be equipped with sensors to measure passage of traffic within the
areas through which the fire brigade truck might go through in order to reach the place
where the emergency is located. Objects here will be streets and street junctions. Inter-
actors will be cars. Actuators can be traffic lights as they can help speed the fire brigade
through. A context will be a fire occurring at peak time with a number of alternative
streets to be used. An interaction rule can be “if all streets are busy, use traffic lights to
hold traffic back from the vital passage to be used”.

Scenario 6: If a production line is the environment then different sensors can track the
flow of items at critical bottlenecks in the system and the system can compare the cur-
rent flow with a desired benchmark. Decision makers can then take decisions on how to
proceed and how to react to the arrival of new materials and to upcoming demands. Dif-
ferent parts of the plant can be de/activated accordingly. Similarly, sensors can provide
useful information on places where there has been a problem and the section has stopped
production, requiring a deviation in flow. Objects here are transportation belts and el-
ements being manufactured whilst actuators are the different mechanisms dis/allowing
the flow of elements at particular places. A context can be “a piece of system requiring
maintenance” and a related interaction rule can be “if section A becomes unavailable
then redirect the flow of objects through alternative paths”.

7 Are We There Yet...?

A variety of technology that can be deployed and distributed along different environ-
ments is being produced. People and organizations are opening to this transformation.
Computing, after five decades of unrelenting growth, is in the position to offer systems
that will permeate people’s daily life as never before.

However, this branch of science has already experienced the pain caused by rushed
expectations. Remember AI in the 60s and the AI winter? And then Software Engineer-
ing had its ups and downs as well. Despite good success in achieving techniques [29]
and tools [30] to increase the reliability of software, major disasters occur from time to
time with disastrous consequences for people and companies counted in deaths, injured
and multi-millon losses.

Given that in AmI systems people is the main beneficiary (but also mainly affected
when the system does not deliver as expected) previous lessons learnt should be con-
sidered carefully and enough preparation should be done before widespread use occur.

Looking backwards to how systems have been developed and witnessing the com-
mercial success of faulty systems driven be effective marketing, it is quite likely that
systems will be developed unsystematically and deployed prematurely. AmI systems
are different to previous one and need different methods and tools to flourish.

Ambient Intelligence: Basic Concepts and Applications 25

8 Conclusions

In this chapter, we have reviewed the notion of Ambient Intelligence and associated
emerging areas within computer science. We highlighted that an essential component
of the area is the distribution of technology intelligently orchestrated to allow an envi-
ronment to benefit its users. We illustrated the concept by describing briefly a number
of different areas of possible application. We expanded in what currently is the driving
force of AmI: Smart Homes.

Although the area is very new it has attracted significant attention, sometimes under
different names like “intelligent ubiquitous systems” or “intelligent environments”. An
indication of this is that there is a good number (rapidly increasing) of scientific events,
books published, commercial exhibitions and governmental projects being launched
every year.

AmI has a strong emphasis on forcing computing to make an effort to reach and
serve humans. This may sound the obvious expectation from computing systems but
the reality is that so far humans have to do the effort to specialize themselves in order
to enjoy the advantages of computing. It is expected that enforcing this requirement
at the core of the area will constitute a major driving force and a turning point in the
history of computer science. The technological infrastructure seems to be continuously
evolving in that direction, and there is a fruitful atmosphere on all sides involved: nor-
mal users/consumers of technology, technology generators, technology providers and
governmental institutions, that this paradigm shift is needed and feasible.

Still, achieving that capability is far from easy and certainly is not readily available
at the moment. The short history of computer science is full of problems which turned
to be harder than expected and there is plenty of examples of important systems that
crashed. The very fact that makes AmI systems strong can be also their more serious
weakness. If humans are put at the centre of the system and made more dependant on
the technological environment (we called this an e-bubble), reliability on that e-bubble
will be at the level of safety critical systems.

Since these systems are autonomous and proactive, predictability and reliability
should not be underestimated if we want the environments where we live and work
to be helpful and safe.

References

1. Want, R.: Rfid – a key to automating everything. Scientific American 290, 46–55 (2004)
2. Nugent, C.D., Augusto, J.C.(eds.): Proceedings of 4th International Conference On Smart

homes and health Telematic (ICOST 2006). Smart Homes and Beyond. Assistive Technology
Research Series. IOS Press, Belfast, UK (in print, 2006)

3. Augusto, J.C., Shapiro, D. (eds.): Proceedings of the 2nd Workshop on Artificial Intelligence
Techniques for Ambient Intelligence (AITAmI 2007). Co-located event of IJCAI 2007. IJ-
CAI, Hyderabad, India (2007)

4. Philips: Homelab (2007),
http://www.research.philips.com/technologies/misc/homelab/

5. IST Advisory Group: The european union report, scenarios for ambient intelligence in 2010
(2001), ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf

http://www.research.philips.com/technologies/misc/homelab/
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf

26 J.C. Augusto

6. Augusto, J., Cook, D.: Ambient Intelligence: applications in society and opportunities for
AI. IJCAI, Hyderabad, India. Lecture Notes for the tutorial given during 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007) (2007)

7. Weiser, M.: The computer for the twenty-first century. Scientific American 165, 94–104
(1991)

8. Streitz, N., Nixon, P.: Special issue on ’the disappearing computer. In: Communications of
the ACM, vol. 48(3), pp. 32–35. ACM Press, New York (2005)

9. Weiser, M.: Hot topics: Ubiquitous computing. IEEE Computer 26, 71–72 (1993)
10. Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century. IEEE Com-

puter 36, 25–31 (2003)
11. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,

Englewood Cliffs (2003)
12. Greenfield, A.: Everyware: The Dawning Age of Ubiquitous Computing. Peachpit Press

(2006)
13. Raffler: Other perspectives on ambient intelligence (2006) www.research.philips.

com/password/archive/23/pw23 ambintel other.html
14. Brooks, K.: The context quintet: narrative elements applied to context awareness. In: Pro-

ceedings of the International Conference on Human Computer Interaction (HCI 2003), Erl-
baum Associates, Inc, Mahwah (2003)

15. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human–Computer Interaction, 3rd edn. Prentice-
Hall, Englewood Cliffs (2003)

16. Augusto, J., McCullagh, P., McClelland, V., Walkden, J.-A.: Enhanced Healthcare Provi-
sion Through Assisted Decision-Making in a Smart Home Environment. In: Proceedings of
the 2nd Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI
2007), IJCAI, pp. 27–32 (2007)

17. Cook, D.J., Das, S. (eds.): Smart Environments: Technologies, Protocols and Applications.
John Wiley and Sons, Chichester (2004)

18. Augusto, J., Nugent, C.: Designing Smart Homes: the role of Artificial Intelligence. Springer,
Heidelberg (2006)

19. Pigot, H., Mayers, A., Giroux, S., Lefebvre, B., V. Rialle, N.N.: Smart house for frail and
cognitive impaired elders (2002)

20. Abowd, G.A., Bobick, I., Essa, E., Mynatt, W.: The aware home: Developing technologies
for successful aging (2002)

21. Cook, D.: Health monitoring and assistance to support aging in place. JUCS 12, 15–29 (2006)
22. Helal, A., Mann, W., Elzabadani, H., King, J., Kaddourah, Y., Jansen, E.: Gator tech smart

house: A programmable pervasive space. IEEE Computer magazine, 64–74 (2005)
23. Philips (2006), www.research.philips.com/technologies/syst softw/

ami/background.html
24. Siemens (2006), networks.siemens.de/smarthome/en/index.htm
25. Nokia (2006),

research.nokia.com/research/projects/sensorplanet/index.html
26. VTT (2006), www.vtt.fi/uutta/2006/20060602.jsp
27. Augusto, J., Nugent, C.: A new architecture for smart homes based on adb and temporal

reasoning. In: Zhang, D., Mokhtari, M. (eds.) Toward a Human Friendly Assistive Environ-
ment (Proceedings of 2nd International Conference On Smart homes and health Telematic),
September 15-17, 2004. Assistive Technology Research Series, vol. 14, pp. 106–113. IOS
Press, Amsterdam (2004)

28. Augusto, J.C.: Ambient intelligence: The confluence of pervasive computing and artificial
intelligence. Springer, Heidelberg (2007)

29. ACM-Pnueli (1996), www.acm.org/announcements/turing.html
30. ACM-SPIN (2001), www.acm.org/announcements/ss 2001.html

file:www.research.philips.com/password/archive/23/pw23_ambintel_other.html
file:www.research.philips.com/password/archive/23/pw23_ambintel_other.html
file:www.research.philips.com/technologies/syst_softw/ami/background.html
file:www.research.philips.com/technologies/syst_softw/ami/background.html
networks.siemens.de/smarthome/en/index.htm
research.nokia.com/research/projects/sensorplanet/index.html
www.vtt.fi/uutta/2006/20060602.jsp
www.acm.org/announcements/turing.html
www.acm.org/announcements/ss_2001.html

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 27–36, 2008.
© Springer-Verlag Berlin Heidelberg 2008

How to Quantify Quality: Finding Scales of Measure

Tom Gilb

Norway
Tom@Gilb.com

Abstract. Quantification is key to controlling system performance attributes.
This paper describes how to quantify performance requirements using Plan-
guage – a specification language developed by the author. It discusses in detail
how to develop and use tailored scales of measure.

1 Finding and Developing Scales of Measure and Meters

The basic advice for identifying and developing scales of measure and meters (practi-
cal methods for measuring) for scalar attributes is as follows:
1. Try to re-use previously defined Scales and Meters. Examples [1], [3].

2. Try to modify previously defined Scales and Meters.

3. If no existing Scale or Meter can be reused or modified, use common sense to de-
velop innovative home-grown quantification ideas.

4. Whatever Scale or Meter you start off with, you must be prepared to learn. Obtain
and use early feedback, from colleagues and from field tests, to redefine and improve
your Scales and Meters.

1.1 Reference Library for Scales of Measure

‘Reuse’ is an important concept for, sharing experience and saving time when develop-
ing Scales. You need to build reference libraries of your ‘standard’ scales of measure.

Tag: <assign a tag name to this Scale>.

Version: <date of the latest version or change>.

Owner: <role/email of who is responsible for updates/changes>.

Status: <Draft, SQC Exited, Approved>.

Scale: <specify the Scale with defined [qualifiers]>.

Alternative Scales: <reference by tag or define other Scales of interest as alternatives and
supplements>.

Qualifier Definitions: <define the scale qualifiers, like ‘for defined [Staff]’, list their op-
tions, like {Nurse, Doctor, Orderly}>.

Meter Options: <suggest Meter(s) appropriate to the Scale>.

Known Usage: <reference projects & specifications where this Scale was actually used in
practice with designers’ names>.

Known Problems: <list known or perceived problems with this Scale>.

Limitations: <list known or perceived limitations with this Scale>.

28 T. Gilb

Remember to maintain details supporting each ‘standard’ Scale, such as Source, Owner,
Status and Version (Date). If the name of a Scale’s designer is also kept, you can probably
contact them for assistance and ideas. Here is a template for keeping reusable scales of
measure.

Example: This is a draft template, with <hints>, for specification of scales of measure in a
reference library. Many of the terms used here are defined in Competitive Engineering [2] &
[3]. See example below for sample use of this template.

Tag: Ease of Access.

Version: 11-Aug-2003.

Owner: Rating Model Project (Bill).

Scale: Speed for a defined [Employee Type] with defined [Experience] to get a defined
[Client Type] operating successfully from the moment of a decision to use the application.

Alternative Scales: None known yet.

Qualifier Definitions:

 Employee Type: {Credit Analyst, Investment Banker, …}.

 Experience: {Never, Occasional, Frequent, Recent}.

 Client Type: {Major, Frequent, Minor, Infrequent}.

Meter Options:

 Test all frequent combinations of qualifiers at least twice. Measure speed for the com-
binations.

Known Usage: Project Capital Investment Proposals [2001, London].

Known Problems: None recorded yet.

Limitations: None recorded yet.

Example of a ‘Scale’ specification for a Scale reference library. This exploits the template in
the previous example.

1.2 Reference Library for Meters

Another important standards library to maintain is a library of ‘Meters.’ Meters sup-
port scales of measure by providing practical methods for actually measuring the nu-
meric Scale values. ‘Off the shelf’ Meters from standard reference libraries can save
time and effort since they are already developed and are more or less ‘tried and tested’
in the field.

It is natural to reference suggested Meters within definitions of specific scales of
measure (as in the template and example above). Scales and Meters belong intimately
together.

2 Managing ‘What’ You Measure

It is a well-known paradigm that you can manage what you can measure. If you want
to achieve something in practice, then quantification, and later measurement, are es-
sential first steps for making sure you get it. If you do not make critical performance
attributes measurable, then it is likely to be less motivating for people to find ways to

 How to Quantify Quality: Finding Scales of Measure 29

deliver the necessary performance levels. They have no clear targets to work towards,
and there are no precise criteria for judgment of failure or success.

3 Practical Example: Scale Definition

‘User-friendly’ is a popular term. Can you specify a scale of measure for it?
Here is my advice on how to tackle developing a definition for this.

1. If we assume there is no ‘off-the-shelf’ definition that could be used (in fact there
are, see [1] and [3]):

. Be more specific about the various aspects of the quality. There are many
distinct dimensions of quality for user-friendly such as ‘user acceptance’,
‘user training’, ‘user errors made’, ‘user customization’ and ‘environmen-
tally friendly’. List about 5 to 15 aspects of some selected quality that is
critical to your project.

. For this example, let’s select ‘environmentally friendly’ as the one of many
aspects that we are interested in, and we shall work on this below as an ex-
ample.

2. Invent and specify a Tag: ‘Environmentally Friendly’ is sufficiently descriptive.
Ideally, it could be shorter, but it is very descriptive left as it is. Let’s indicate a ‘for-
mally defined concept’ by capitalizing the tag.

Tag: Environmentally Friendly.

Note, we usually don’t explicitly specify ‘Tag:’, but this sometimes makes the tag
identity clearer.

3. Check there is an Ambition statement, which briefly describes the level of require-
ment ambition. ‘Ambition’ is a defined Planguage parameter. More parameters fol-
low, below.

Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things.

4. Ensure there is general agreement by all the involved parties with the Ambition
definition. If not, ask for suggestions for modifications or additions to it. Here is a
simple improvement to my initial Ambition statement. It actually introduces a ‘con-
straint’.

Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things, which does not reduce the protection already present in nature.

5. Using the Ambition description, define an initial ‘Scale’ (of measure) that is some-
how quantifiable (meaning – you can meaningfully attach a number to it). Consider
‘what will be sensed by the stakeholders’ if the level of quality changes. What would
be a ‘visible effect’ if the quality improved? My initial, unfinished attempt, at finding

30 T. Gilb

a suitable ‘Scale’ captured the ideas of change occurring, and of things getting ‘better
or worse’:

Scale: The % change in positive (good environment) or negative directions for de-
fined [Environmental Changes].

My first Scale parameter draft, with a single scalar variable.

However, I was not happy with it, so I made a second attempt. I refined the Scale by
expanding it to include the ideas of specific things being effected in specific places
over given times:

Scale: % destruction or reduction of defined [Thing] in defined [Place] during a
defined [Time Period] as caused by defined [Environmental Changes].

This is the second Scalar definition draft with four scalar variables. These will be more-
specifically defined whenever the Scale is applied in requirement statements such as ‘Goal’.

This felt better. In practice, I have added more [qualifiers] into the Scale, to indicate
the variables that must be defined by specific things, places and time periods when-
ever the Scale is used.

6. Determine if the term needs to be defined with several different scales of measure,
or whether one like this, with general parameters, will do. Has the Ambition been
adequately captured? To determine what’s best, you should list some of the possible
sub-components of the term (that is, what can it be broken down into, in detail?). For
example:

Thing: {Air, Water, Plant, Animal}.

Place: {Personal, Home, Community, Planet}.

Thing: = {Air, Water, Plant, Animal}.

Place: Consists of {Personal, Home, Community, Planet}.

Definition examples of the scale qualifiers used in the examples above. The first example
means: ‘Thing’ is defined as the set of things Air, Water, Plan and Animal (which, since they
are all four capitalized, are themselves defined elsewhere). Instead of just the colon after the
tag, the more explicit Planguage parameter ‘Consists Of’ or ‘=’ can be used to make this nota-
tion more immediately intelligible to novices in reading Planguage.

Then consider whether your defined Scale enables the performance levels for these
sub-components to be expressed. You may have overlooked an opportunity, and may
want to add one or more qualifiers to that Scale. For example, we could potentially
add the scale qualifiers ‘… under defined [Environmental Conditions] in defined
[Countries]…’ to make the scale definition even more explicit and more general.

Scale qualifiers (such as …‘defined [Place]’…) have the following advantages:

• they add clarity to the specifications
• they make the Scales themselves more reusable in other projects

 How to Quantify Quality: Finding Scales of Measure 31

• they make the Scale more useful in this project: specific benchmarks, targets and
constraints can be specified for any interesting combination of scale variables (such
as, ‘Thing = Air’).

7. Start working on a ‘Meter’ – a specification of how we intend to test or measure the
performance of a real system with respect to the defined Scale. Remember, you
should first check there is not a standard or company reference library Meter that you
could use.

Try to imagine a practical way to measure things along the Scale, or at least sketch
one out. My example is only an initial rough sketch.

Meter: {scientific data where available, opinion surveys, admitted intuitive guesses}.

This Meter specification is a sketch defined by a {set} of three rough measurement concepts.
These at least suggest something about the quality and costs with such a measuring process.
The ‘Meter’ must always explicitly address a particular ‘Scale’ specification.

The Meter will help confirm your choice of Scale as it will provide evidence that
practical measurements can feasibly be obtained on a given scale of measure.

8. Now try out the Scale specification by trying to use it for specifying some useful
levels on the scale. Define some reference points from the past (Benchmarks) and
some future requirements (Targets and Constraints). For example:

Environmentally Friendly:
Ambition: A high degree of protection, compared to competitors, over the short-term and
the long-term, in near and remote environments for health and safety of living things, which
does not reduce the protection already present in nature.
Scale: % destruction or reduction of defined [Thing] in defined [Place] during a defined
[Time Period] as caused by defined [Environmental Changes].
============= Benchmarks =================
Past [Time Period = Next Two Years, Place = Local House, Thing = Water]: 20% <- in-
tuitive guess.
Record [Last Year, Cabin Well, Thing = Water]: 0% <- declared reference point.
Trend [Ten to Twenty Years From Now, Local, Thing = Water]: 30% <- intuitive. "Things
seem to be getting worse."
============ Scalar Constraint ==========
Fail [End Next Year, Thing = Water, Place = Eritrea]: 0%. "Not get worse."
=============== Targets ===================
Wish [Thing = Water, Time = Next Decade, Place = Africa]: <3% <- Pan African Council
Policy.
Goal [Time = After Five Years, Place = <our local community>, Thing = Water]: <5%.

If this seems unsatisfactory, then maybe I can find another, more specific, scale of
measure? Maybe use a ‘set’ of different Scales to express the measured concept bet-
ter? See examples below.

Here is an example of a single more-specific Scale:

Scale: % change in water pollution degree as defined by UN Standard 1026.

32 T. Gilb

Here is an example of some other and more-specific set of Scales for the ‘Environ-
mentally Friendly’ example. They are perhaps a complimentary set for expressing a
complex Environmentally Friendly idea.

Environmentally Friendly:

Ambition: A high degree of protection, compared to competitors, over the short-term and
the long-term, in near and remote environments for health and safety of living things, which
does not reduce the protection already present in nature.

--Some scales of measure candidates – they can be used as a complimentary set --

Air: Scale: % of days annually when <air> is <fit for all humans to breath>.

Water: Scale: % change in water pollution degree as defined by UN Standard 1026.

Earth: Scale: Grams per kilo of toxic content.

Predators: Scale: Average number of <free-roaming predators> per square km, per day.

Animals: Scale: % reduction of any defined [Living Creature] who has a defined [Area] as
their natural habitat.

Many different scales can be candidates to reflect changes in a single critical factor.

Environmentally Friendly is now defined as a ‘Complex Attribute,’ because it con-
sists of a number of ‘elementary’ attributes: {Air, Water, Earth, Predators, Animals}.
A different scale of measure now defines each of these elementary attributes. Using
these Scales we can add corresponding Meters, benchmarks (such as Past), constraints
(such as Fail), and target levels (such as Goal) to describe exactly how Environmen-
tally Friendly we want to be.

Level of Specification Detail. How much detail you need to specify, depends on
what you want control over, and how much effort it is worth. The basic paradigm of
Planguage is you should only elect to do what pays off for you. You should not build
a more detailed specification than is meaningful in terms of your project and eco-
nomic environment. Planguage tries to give you sufficient power of articulation to
control both complex and simple problems. You need to scale up, or down, as appro-
priate. This is done through common sense, intuition, experience and organizational
standards (reflecting experience). But, if in doubt, go into more detail. History says
we have tended in the past to specify too little detail about requirements. The result
consequently has often been to lose control, which costs a lot more than the extra in-
vestment in requirement specification.

4 Language Core: Scale Definition

This section discusses in more detail the specification of Scales using qualifiers.

The Central Role of a ‘Scale’ within Scalar Attribute Definition. The specified Scale
of an elementary scalar attribute is used (re-used!) within all the scalar parameter

 How to Quantify Quality: Finding Scales of Measure 33

specifications of the attribute (that is, within all the benchmarks, the constraints and the
targets). In other words, a Scale parameter specification is the heart of a specification. A
Scale is essential to support all the related scalar parameters: for example Past, Record,
Trend, Goal, Budget, Stretch, Wish, Fail and Survival. (As these parameters specify the
levels using the Scale.)

Each time a different scalar level parameter is specified, the Scale specification
dictates what has to be defined numerically and in terms of Scale Qualifiers (like
‘Staff = Nurse’). And then later, each time a scalar parameter definition is read, the
Scale specification itself has to be referenced to ‘interpret’ the meaning of the corre-
sponding scale specification. So the Scale is truly central to a scalar definition. For
example ‘Goal [Staff = Nurse] 23%’ only has meaning in the context of the corre-
sponding scale: for example ‘Scale: % of defined [Staff] attending the operation’,
Well-defined scales of measure are well worth the small investment to define them, to
refine them, and to re-use them.

Specifying Scales using Qualifiers. The scalar attributes (performance and re-
source) are best measured in terms of specific times, places and events. If we fail
to do this, they lose meaning. People wrongly guess other times, places and events
than you intend, and cannot relate their experiences and knowledge to your num-
bers. If we don't get more specific by using qualifiers, then performance and re-
source continues to be a vague concept, and there is ambiguity (which times?
which places? which events?).

Further, it is important that the set of different performance and resource levels for
different specific time, places and events are identified. It is likely that the levels of
the performance and resource requirements will differ across the system depending on
such things as time, location, role and system component.

Decomposing complex performance and resource ideas, and finding market-
segmenting qualifiers for differing target levels is a key method for competing for
business.

Embedded Qualifiers within a Scale. A Scale specification can set up useful quali-
fiers by declaring embedded scale qualifiers, using the format ‘defined [<qualifier>]’.
It can also declare default qualifier values that apply by default if not overridden, ‘de-
fined [<qualifier>: default: <User-defined Variable or numeric value>]’. For example,
[…default: Novice].

Additional Qualifiers. However, embedded qualifiers should not stop you adding
any other useful additional qualifiers later, as needed, during scale related specifica-
tion (such as Goal or Meter). But, if you do find you are adding the same type of pa-
rameters in almost all related specifications, then you might as well design the Scale
to include those qualifiers. A Scale should be built to ensure that it forces the user to
define the critical information needed to understand and control a critical performance

34 T. Gilb

or resource attribute. This implies that scale qualifiers serve as a checklist of good
practice when defining scalar specifications, such as Past and Goal.

Here is an example of how locally defined qualifiers (see the example in the Goal
specification) can make a quality specification more specific. In this example we are
also going to show how a requirement can be made conditional upon an event. If the
event is not true, the requirement does not apply.

First, some basic definitions are required:

Assumption A: Basis [This Financial Year]: Norway is still not a full member of
the European Union.

EU Trade: Source: Euro Union Report "EU Trade in Decade 2000-2009".

Positive Trade Balance: State [Next Financial Year]: Norwegian Net Foreign
Trade Balance has Positive Total to Date.

The Planguage parameters {Basis, Source, & State} are in bold text for readability of this
example.

Now we apply those definitions below:

Quality A:
Type: Quality Requirement.

Scale: % by value of Goods delivered that are returned for repair or replacement by con-
sumers.

Meter [Development]: Weekly samples of 10,

[Acceptance]: 30 day sampling at 10% of representative cases,

[Maintenance]: Daily sample of largest cost case.

Fail [European Union, Assumption A]: 40% <- European Economic Members.

Goal [EU and EEU members, Positive Trade Balance]: 50% <- EU Trade.

Some of the user-defined terms used here (like EU Trade) are more fully defined in the ex-
ample above this one.

The Fail and the Goal requirements are now defined partly with the help of quali-
fiers. The Goal to achieve 50% (or more, is implied) is only a valid plan if ‘Positive
Trade Balance’ is true. The Fail level requirement of 40% (or worse, less, is implied)
is only valid if ‘Assumption A’ is true. All qualifier conditions must be true for the
level to be valid.

5 Principles: Scale Specification

Here is a set of principles to help summarise the key points about Scales – see below.

 How to Quantify Quality: Finding Scales of Measure 35

The Principle of ‘Defining a Scale of Measure’

If you can’t define a scale of measure, then the goal is out of control.

Specifying any critical variable starts with defining its units of measure.

The Principle of ‘Quantification being Mandatory for Control’

If you can’t quantify it, you can’t control it1.

If you cannot put numbers on your critical system variables, then you cannot expect
to communicate about them, or to control them.

The Principle of ‘Scales should Control the Stakeholder Requirements’

Don’t choose the easy Scale, choose the powerful Scale.

Select scales of measure that give you the most direct control over the critical stake-
holder requirements. Chose the Scales that lead to useful results.

The Principle of ‘Copycats Cumulate Wisdom’

Don’t reinvent Scales anew each time – store the wisdom of other Scales for reuse.

Most scales of measure you will need, will be found somewhere in the literature, or
can be adapted from existing literature.

The Cartesian Principle

Divide and conquer said René – put complexity at bay.

Most high-level performance attributes need decomposition into the list of sub-
attributes that we are actually referring to. This makes it much easier to define com-
plex concepts, like ‘Usability’, or ‘Adaptability,’ measurably.

The Principle of ‘Quantification is not Measurement’

You don’t have to measure in order to quantify!

There is an essential distinction between quantification and measurement.

Be clear about one thing. Quantification is not the same as Estimation and Meas-
urement.

“I want to take a trip to the moon in nine picoseconds” is a clear requirement
specification without measurement.”
The well-known problems of measuring systems accurately are no excuse for
avoiding quantification – Quantification allows us to communicate about how
good scalar attributes are or can be – before we have any need to measure them in
the new systems.

1 Paraphrasing a well-known old saying.

36 T. Gilb

The Principle of 'Meters Matter'

Measurement methods give real world feedback about our ideas.

A ‘Meter’ definition determines the quality and cost of measurement on a scale; it
needs to be sufficient for control and for our purse.

The Principle of 'Horses for Courses'22

Different measuring processes will be necessary for different points in time, differ-
ent events, and different places.33

The Principle of ‘The Answer always being ‘42’’44

Exact numbers are ambiguous unless the units of measure are well-defined and
agreed.

Formally-defined scales of measure avoid ambiguity. If you don’t define scales of
measure well, the requirement level might just as well be an arbitrary number.

The Principle of ‘Being Sure About Results’

If you want to be sure of delivering the critical result – then quantify the require-
ment.

Critical requirements can hurt you if they go wrong – and you can always find a
useful way to quantify the notion of ‘going right; to help you avoid doing so.

6 Conclusions

This paper has shown how Planguage specifies performance scales of measure, and
how such scales can be used to define benchmarks, targets and constraints. Further
discussion and additional information about Planguage can be found in ‘Competitive
Engineering’ [3].

References

1. Gilb, T.: Principles of Software Engineering Management, p. 442. Addison-Wesley, Read-
ing (1988), ISBN 0-201-19246-2 (See particularly page 150 (Usability) and Chapter 19
Software Engineering Templates)

2. Various free papers, slides, and manuscripts on, http://www.Gilb.com/
3. Gilb, T.: Competitive Engineering, p. 474. Elsevier Butterworth-Heinemann, Amsterdam

(2005), ISBN 0-7506-6507-6 (An Indian edition is also available)

2 ‘Horses’ for Courses is UK expression indicating something must be appropriate for use, fit

for purpose.
3 There is no universal static scale of measure. You need to tailor them to make them useful.
4 Concept made famous in Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

Metamodeling as an Integration Concept

Dimitris Karagiannis and Peter Höfferer

University of Vienna, A-1210 Vienna, Brnner Strae 72, Austria
dk@dke.univie.ac.at, ph@dke.univie.ac.at

Abstract. This paper aims to provide an overview of existing applications of the
metamodeling concept in the area of computer science. In order to do so, a lit-
erature survey has been performed that indicates that metamodeling is basically
applied for two main purposes: design and integration. In the course of describing
these two applications we are also going to briefly describe some of the existing
work we came across. Furthermore, we provide an insight into the important area
of semantic integration and interoperability, whereas we show how metamodels
can be brought together with ontologies in this context. The paper is concluded
with an outlook on relevant future work in the field of metamodeling.

Keywords: Metamodeling, design, semantic integration, semantic interoperabil-
ity, ontologies.

1 Introduction

This paper intends to provide a brief overview on the use of metamodels in different
areas of computer science. In order to do so, we chose the empirical method of a lit-
erature survey. Alas, current state-of-the-art of search technologies like renown search
engines on the Internet are still not able to process requests like “How are metamodels
applied in the software engineering community?” producing results with sufficent recall
and precision values1. Therefore, we had to choose a different approach that shall be
briefly described in the following.

We examined the Internet archives of 18 renown journals in different communities of
computer science that is to say software engineering, databases, knowledge engineer-
ing, and information systems. These high quality journals are published by IEEE, ACM,
Springer, Elsevier, or IOSPress – a full list can be found in appendix A in section 5.

When using the provided search facilities of the journals an interesting observation
was made. The idea of enhancing computer systems with a better understanding of se-
mantics has been in the spotlight for some years now, just think of the intitiative in the
context of the Semantic Web. One of the goals of this initiative is to improve search
results in the way to really provide us with the information we need. In order to do
so the use of ontology-like constructs (cf. [2], [3]) shall help us to cope with different

1 Recall is calculated as the ratio of the number of documents retrieved that are relevant com-
pared to the total number of documents that are relevant. Precision on the other hand is the
number of documents retrieved that are relevant divided by the total number of documents that
are retrieved. [1]

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 37–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 D. Karagiannis and P. Höfferer

writings, synonyms, homonyms, and the like. But reality is still different. It is still im-
possible to use “metamodeling” (American English) as search string also getting hits
with the keyword “metamodelling” (British English) and vice versa. Different ways of
writing like “metamodeling”, “meta-modeling”, and “meta modeling” are still result-
ing in different search results. There is also a long way to go until we are really able
to obtain semantically related hits when searching for “metamodeling” that might for
example be indexed with “conceptual modeling”.

In the end we used “metamodeling, “meta-modeling, “meta modeling” each written
once in American and once in British English as well as, “metamodel”, “meta-model”,
and “meta model” as nine different search strings. The actual inquiry was accomplished
in July 2006 and provided us with a corpus of 77 articles dealing with our subject
of interest whereas no search restrictions concerning the time the papers have been
published have been applied. This corpus was used as basis for the further analysis of
classification possibilities for metamodel applications.

It has to be stressed here that we concentrated on the tasks that can be handled with
metamodels which means investigating their practical use to solve real-world problems.
We are not talking about a classification of how metamodels can actually be represented.
If we would have concentrated on this design issue we would have spoken about the
application of logical rules or object-orientation and their reproduction in computer
systems. We also have not taken into account the actual practical implementation of the
identified usages which would have implied dealing with service-oriented architectures,
databases and the like (see figure 1).

design
How are metamodels
represented?

use
How are metamodels
applied?

implementation
How are applications of
metamodels implemented?m

 e
 t

a
m

 o
 d

 e
 l

i n
 g

Fig. 1. Three different aspects for reasearch work on metamodeling

The remainder of the paper is organized as follows: Section 2 gives a brief overview
on modeling and metamodeling in order to ensure a common understanding and to
stress the difference between linguistic and ontological metamodeling. Thereafter, in
section 3 a simple classification of metamodel applications is presented as well as some
of the existing work from literature. Hereby, integration is identified as an important and
powerful application of metamodeling and described in more detail. Section 4 continues
this topic in showing how semantic aspects of integration and interoperability can be
tackled combining metamodels and ontologies. The paper is concluded in section 5 also
giving an outlook on important future work.

Metamodeling as an Integration Concept 39

arranges
according to

defines grammar

Semantics

defines meaning

Semantic
Schema

Syntax

Semantic
Mapping

connects
considers

Notation

Modelling
Language

semantics

semantic
domain

syntaxnotation

modeling
language

defines visualization

visualizes

semantic
mapping

describes
meaning of

defines way of language application
delivers

steps results

modeling
procedure

modeling
technique

Fig. 2. Elements of a modeling technique [8]

2 Modeling and Metamodeling

Basically, in the area of computer science models are seen as “a representation of either
reality or vision.” ([4], p. 187) Therefore, they describe things either as they are or as
they should be. Of course, this representation is not able to include all aspects of the
original but can only focus on some of them (property of reduction) and a model is
always intended for a specific purpose (property of pragmatics). [5]

Models can be classified according to the language that is used for their creation.
Non-linguistic or iconic models use signs and symbols that have an apparent similarity
to the concepts of the real world that are being modeled. Linguistic models on the other
hand use basic primitives (i.e. signs, characters, numbers, ...) that do not contain any
apparent relationship to the part of reality being modeled except the one that is defined
in an explicit way. [6] Nearly all models used in computer science are of the latter
linguistic type2 on which we restrain ourselves hereafter.

The next step before we can talk about metamodels is to clarify how models are ac-
tually built. Here the notion of a modeling technique comes into play which describes
the modeling constructs of a modeling language (usually entities, relationships and at-
tributes) and a modeling procedure that defines how these constructs have to be com-
bined in order to create a valid model (see figure 2). Following Harel and Rumpe a
modeling language now consists of syntax which focuses “purely on notational aspects”
and semantics which defines the meaning [7]. Khn extends this view in that he seperates
notation from syntax as he defines notation as the “representation of the elements of the
language” [8]. Syntax then is how the representation elements are allowed to be com-
bined. We consider this distinction as important as it allows for changing only syntax
or only notation in the context of method engineering without affecting the other.

A metamodel is most generally defined as being “a model of models” [9]. A graph-
ical representation similar to figure 3 is typically used to explain this. On the bottom

2 Linguistic models can be further distinguished in being realized with textual and graphi-
cal/diagrammatic languages [7].

40 D. Karagiannis and P. Höfferer

layer 0 there is a subject under consideration that shall be modeled. This is done with
the help of a modeling language. For instance, when creating a database for let’s say
the management of student data we can use the Entity-Relationship modeling technique
(ERM, [10]) in order to abstract reality. The available modeling primitives of ERM (i.e.
entities, weak entities, relationships with different cardinalities) are described in the
metamodel on layer 2 using a meta modeling language. This modeling primitives can be
defined by another meta layer, layer 3, which is called meta-meta-layer or meta2-layer
containing a meta2-model using a meta2 modeling language. Thus, here the concept of
metamodeling is used as a means of language definition. Atkinson and Khne denote this
as linguistic metamodeling [11].

modeling languages

meta² modeling language

meta modeling language

modeling language

models

meta²-model

metamodel

model

layer n

layer 3

layer 2

layer 1

subject under considerationlayer 0

in

in

in

describes

describesconforms
to

represented
by

conforms
to

.

.

.

.

.

.

.

.

.

Fig. 3. Metamodeling layers (adapted from [6])

But according to these authors this “traditional” point of view on metamodeling cov-
ers only one of two important dimensions. It does not explicitely consider that there is
not only a linguistic instantiation of concepts like student as an instance of entity, for
example, but also an ontological one as student is a person, too. In linguistic metamod-
eling student and person are situated on the same layer, whereas from an ontological
point of view person would be on a meta layer. This aspect is called ontological meta-
modeling whereas Atkinson and Khne emphasize that sophisticated metamodeling en-
vironments should give equal importance to both indentified metamodeling dimensions.
We will make use of these two different metamodeling aspects in section 4.

Now that the basics of models and metamodeling have been recapitulated it is time
to proceed to our approach for a classification of metamodeling applications.

3 Metamodels in Action: Design and Integration

When we started our literature survey we wondered whether we could find different
typical metamodel applications for different areas of computer science. That would be

Metamodeling as an Integration Concept 41

to say that, for instance, the knowledge engineering community is using metamodels
in one special way whereas let’s say the software engineering community is making
a completely different use. After having examined 77 papers (cf. section 1) we saw
that this is not the case. In fact, we realized that metamodels are utilized to solve two
fundamental types of tasks that we would like to denote as design and integration.

Design involves the creation of metamodels for both the prescriptive definition of
not yet existing as well as the descriptive modeling of already existing “subjects” of
interest. As will be shown later we distinguish between macro-level and micro-level
design.

Integration on the other hand denotes the application of metamodeling for bringing
together different existing “artefacts” of potentially various kinds that have been gen-
erated using different metamodels. This can now, for instance, mean the integration of
heterogeneous data sources or the mapping between graphical/diagrammatic models
(layer 1 in figure 3) that are all described by different metamodels. As we consider this
use of metamodels as a very important and powerful one we are going to describe it
in more detail with the help of figure 4 where an example scenario from the area of
business process management is depicted.

Here on the meta-level three different metamodels are depicted whereas two of them
define modeling languages for creating business process models – i.e. the Business
Process Management Systems (BPMS) metamodel [12] and the Event Driven Process
Chains (EPC) metamodel [13] – and one more for creating working environment mod-
els that describe the organizational structure of enterprises. On the bottom layer three
corresponding model instances are shown. In this scenario integration now means to
find logical correspondances between instances on the model-layer. There are three dif-
ferent aspects that we would like to define here: transformation which allows for the
conversion of models that are representing the same aspects of reality (e.g. two business
process models that are showing exactly the same chain of activities) from one modeling
language (i.e. metamodel) to another. In our case a transformation of the BPMS process
model into an EPC process model and vice versa could be performed. Interoperability
is achieved when semantically identical or related process steps can be identified in dif-
ferent processes that can be even carried out in different organizations. Knowing such
tasks allows for seamless inter-organizational cooperation or for the identification of
efficiency measures, for instance. Finally, with the help of references different elements
of models that are conform to different metamodels can be linked. “Acivities” from the
business process metamodel can, for example, be related to “roles” or “organizational
units” from the working environment model.

Prerequisites for being able to establish these three types of relations on the model-
layer are corresponding links on the meta-level. In this context we speak about mapping
and integration. Mapping implies the definition of elements of different metamodels
that are related somehow. These relations can be of different types: equivalences, subor-
dinate relationships, complementary relationships, and the like. For instance, the meta-
model elements “activity” in the BPMS business process metamodel and “function” in
the EPC metamodel are equivalent whereas “role” from the working environment meta-
model might be related to “activity” using a “carries out”-relation. The identification of

42 D. Karagiannis and P. Höfferer

such mappings allows for the creation of integrated metamodels which enables the use
of the three aspects that have been defined above for the model-level.3

It is important to notice that in order to be able to define mapping relationships a com-
mon generic meta2-model is needed to which the elements of the different metamodels
correspond to. This common meta2-model ensures the comparability of metamodel ele-
ments with one another. Thus, whereas design can be realized with only one meta-layer
we need a meta2-layer for integration. Of course, this also implies that we cannot han-
dle integration tasks without having properly defined all involved metamodels on the
design level.

generic meta²-model

Kunden-
auftrag

eingetro ffen

Kunden-
auftrag

erfassen

Kunden-
auftrag
erfaßt

Kunden-
angebot

techn.prüfen

KA techn.
nicht

machbar

KA
techn.

machbar

XOR

BPMS metamodel
(business process
models)

EPC metamodelmapping /
integration

transformation /
interoperability

meta²- level

meta-level

model-level

business process model A (BPMS) business process
model B (EPC)

business
process model

control flow
object

subprocess
invocation activity process

start end decision parallelity union

random
generatorvariable

subsequent

setssets
variable

called process
business

process model

control flow
object

subprocess
invocation activity process

start end decision parallelity union

random
generatorvariable

subsequent

setssets
variable

called process

EPC

process
flow object

event control
flow operator

XOR OR AND

function

aggregation
function

elementary
function

additional
process objects

organizational
unit

information
system

information
object

subsequent

details

particularizes

is attached
to

EPC

process
flow object

event control
flow operator

XOR OR AND

function

aggregation
function

elementary
function

additional
process objects

organizational
unit

information
system

information
object

subsequent

details

particularizes

is attached
to

organizational
unit resource

person role

is subordinated

belongs to

uses resourceis manager

has role
belongs to

organizational
unit resource

person role

is subordinated

belongs to

uses resourceis manager

has role
belongs to

BPMS metamodel
(working environment
models)

references

working environment
model (BPMS)

attribute facet

instance
attributegraphic

representation
notebook
definition

class attribute regular
expression

help text

…
model
type

class relation
type

predefined
class

user defined
class

predefined
type

user defined
type

user defined
class hierarchymetamodelADONIS

metamodel

is subclass

is fromclass

is toclass

Fig. 4. Integration and interoperability using metamodels

3 Related work concerning the mapping and integration of metamodels can be found in [14] or
[15], for instance.

Metamodeling as an Integration Concept 43

We were able to find examples for these two major use cases of metamodeling in
various domains like “data processing”, “knowledge representation”, “requirements en-
gineering”, “information systems”, “business process- & workflow management”, “de-
cision support”, and “business”. In the following, we will describe some existing work
we came across during our literature survey.

3.1 Design

Considering design two different aspects have to be distinguished: On the one hand the
metamodeling concept with its abstraction layers (see figure 3) can be used to realize
a kind of inheritance mechanism. We call this “micro-level design” as the inner struc-
ture of data models, representation languages, or the like is defined here. “Macro-level
design” on the other hand generates concrete metamodels (layer 2 in figure 3) that act
as templates or reference structures that can be used to deal with a variety of contin-
uative tasks. The macro-perspective metamodels contain a lot of application specific
semantics and their implementation is therefore restricted to particular domains while
the micro-perspective use is generic.

Macro-Level Design. One widespread application of metamodels is top-down as de-
sign templates or reference frameworks for certain tasks within a specified domain. The
advantage of this use is quite apparent: a commonly accepted understanding of rele-
vant “real-life”-concepts is guaranteed and new model instances can be created in a
structured way whereas it is ensured that all relevant aspects are taken into account and
nothing of importance is forgotten.

In our literature study we found a wide variety of applications of macro-level design
metamodels. In the area of data processing, formal metamodels are, for instance, used
to describe basic ETL (extraction-transformation-loading) tasks in the context of the
extraction, processing and insertion of operational data in “cleaned” databases of data
warehouses. The identified metamodel constructs are hereby used to generate templates
(e.g. “domain mismatch”, “fact table”, ...) that can be lined up to compose complex
ETL processes ([16], [17]).

Design templates are especially used in the information systems community. Some
concrete applications include templates for the implementation of web-based systems
[18], an agent-oriented metamodel for organizations and information systems [19], and
federated information systems [20].

[21] provide a general metamodel for business processes and [22] define a meta-
model for adaptive workflow management systems. As workflow management systems
use strict predefined process control structures, they are not that suited for supporting
knowledge intensive processes that usually need much more flexibility. For the support
of knowledge workers that have to act in such a flexible environment a new type of
systems have been proposed: case handling systems that assist rather than strictly guide
a user. [23] introduce a metamodel for the cases that are provided by such systems.

Another macro-level design application can be found in [24] where a metamodel of
the Bunge-Wand-Weber model (BWWM) is generated which is basically a model for
defining requirements when designing and realizing information systems. The original
BWWM defines five fundamental and about 30 other constructs (see [25]) and it is

44 D. Karagiannis and P. Höfferer

argued to be hard to understand because of this complexity. Rosemann and Green see a
variety of advantages in their metamodel of the BWWM: it clarifies the understanding,
simplifies the communication, is a means for structuring and analyzing, and can finally
be used to derive new modeling techniques.

We also came across two metamodels that are directly intended for business use.
[26] gives a metamodel for the definition of business rules, and [27] for the creation of
eContracts.

Micro-Level Design. To recapitulate, micro-level design is concerned with the defi-
nition of the inner structure of data models or representation languages. This ability is
often used in the context of data processing for enhancing the reflection mechanisms4

of database management systems. To be more specific, the TIGUKAT object model
[28] uses the concept of meta- and meta2-objects in order to define types with specific
behavior. This behavior is then passed to the objects of the instance level. In this context
metamodeling is used to realize an inheritance mechanism that is known from the area
of object-oriented programming, for instance. The FORM data model [29] for repre-
senting heterogeneous types of entities and relationships in an organization does a quite
similar thing as it uses metamodeling “to express meta-knowledge that allows a system
to enforce generic patterns of object behavior rather than a number of specific actions”.
A recent work proposes a framework for uniform representation of and access to data
models, schema, and data. This “uni-level description” (ULD) also makes use of the
classic metamodeling layers with one conceptual difference: schema data and instances
are each stored on the same meta-layer as compared to earlier approaches that put these
on two different meta layers [30].

Another example for micro-level design using metamodeling concepts can be found
in the knowledge engineering discipline. Here a knowledge representation language
called Telos is introduced that uses meta-layers as classification dimension in order to
express “instance of” and “abstraction” relationships [31], [32].

3.2 Integration

The basic problem that is dealt with here is how to bring together models (layer 1 of
figure 3) that have been realized using different metamodels (layer 2). As Zaniolo has
put it “a direct mapping between different models is a formidable problem” ([33], p.
33) and is not feasible in practice. Therefore the mapping should rather be realized on
the meta-layer or to be more specific at a meta2-layer that acts as “translator” between
metamodels that have been instantiated from the same meta2-model. It has to be stressed
here that the notion of a meta2-model is sometimes not found literally in work dealing
with integration but, nevertheless, the concept of a meta2-layer is used in an implicit
way.

This “translator capability” can now be used to integrate heterogeneous data sources.
In our document corpus we found three different applications for doing this. [33] real-
ize a schema mapping between multiple data formats. [34] propose a global informa-
tion resources dictionary (GIRD) that abstracts all classes of enterprise metadata which

4 Reflection is the ability of a system to manage information about itself and to reason about this
information. [28]

Metamodeling as an Integration Concept 45

is structured in four different categories, that is to say functional models, structural
models, software and hardware resources, and enterprise/application families. GIRD is
then used to answer global database queries that integrate data of all categories. In the
context of enhancing the use of data warehouses by management, [35] integrate data
models with enterprise models in order to provide analyses that really correspond to the
information needs of the users.

In the areas of information systems and software engineering integration is often
used in the context of method engineering. [36], for instance, build one integrated
metamodel of object-oriented methodologies concerning all development phases (i.e.
analysis, design, and programming). The advantage of this approach is that this single
metamodel can also be used to generate object-oriented program code (OOPC) from
analysis/design model instances (OOADM) as a mapping between OOADM and OOPC
can be established on the metamodel-layer.

Situational method engineering which is “concerned with the tuning of methods and
techniques to the specific characteristics of a certain project” [37] is an integration
application that can be found quite often in literature including the following articles:
[38], [39], [37], [40] and [41].

Finally, we came across an application of integration in the requirements engineering
domain. [42] explicitely mention the use of a meta2-model to create an integrated view
that also enables the computer-based support of team- and goal-oriented analysis meth-
ods like the informal method JAD. They also make use of the model transformation
capabilities of the meta2-approach that “come for free” in that different requirements
models that have been realized in unequal modeling languages (therefore using various
metamodels) can be mapped.

It can be seen that metamodels are an adequate means for integration. But so far the
described approaches are not able to realize semantic integration and interoperability
which “is concerned with the use of explicit semantic descriptions” [43] most often
provided in the form of ontologies [44]. The next section will show how metamodels
and ontologies can be combined.

4 Semantic Integration and Interoperability Using Metamodels
and Ontologies

The topic of integrating data and ensuring the interoperability of information systems
is of great practical importance which can already be seen by the fact that according
to Gartner up to 40% of the companies’ information technology budgets are spent on
integration issues [45]. The heterogeneities that have to be dealt with in this context
are usually classified to be of syntactical, structural or semantic nature [3])whereas
resolving the latter seems to be most laborious as 60-80% of the resources of integration
projects are spent on reconciling semantic heterogeneities [46].

In order to be able to overcome the heterogeneities of resources – regardless if they
are data, information systems, or anything else – they have to be represented in an ade-
quate way. For this task linguistic, diagrammatic languages (cf. section 2) are often well
suited like demonstrated by UML or ERM. These languages together with the concept
of metamodeling are able to express syntactical and structural aspects as well as what

46 D. Karagiannis and P. Höfferer

we would like to denote as type semantics. This type semantics is defined through the
process of linguistic metamodeling and allows reasoning such as, for instance, student
is derived from the metamodel construct entity and therefore is a kind of real world
object and not a relationship. But in this context we are not able to state anything about
the semantics of student itself. It can by no means be reasoned that this term denotes a
human person that can be male or female and who is attending an university-like insti-
tution. We would like to call this information inherent semantics as it describes a kind
of “inner meaning” of modeled resources that is exceeding the type semantics that is
being inherited by the elements of the metamodel-layer.

This inherent semantics can now be made explicit by linking model elements rep-
resenting resources with concepts of ontologies, a process that is called lifting [47] or
also ontology anchoring [38] which is the quintessence of semantic integration. Lifting
reflects in our opinion what [11] denote as ontological metamodeling and is of course
not limited to the model-layer but can be applied to the meta- or meta2-layer as well.
This shall be illustrated in figure 5 using the following example.

meta²-model-layer

meta-model-
layer

model-
layer

A(Ω)

B(Ω)

a(A)

Ω

… linguistic metamodeling: syntax, structure, type semantics

III

semantics definition:
commonly accepted
ontologies

b(B)

2ledom1ledom

metamodel 1 metamodel 2

meta²-model

… ontological metamodeling („lifting“): explication of implicit type semantics and inherent semantics

ontology 1

ontology 2

I

definition of syntax and
(implicit) type semantics

x(y) … model element x conforms to model element y of the superior metamodel

II

Fig. 5. Architecture for semantic interoperability using both metamodels and ontologies

Imagine two models that have been created according to different metamodels and
are now to be integrated which means that semantically related model elements have to
be found. The “classical” metamodel-based approach would follow the path of linguis-
tic instantiation which means that, for instance, it would be reasoned that meta-classes
A and B are related because they are derived from the same meta2-class Ω (meta-classes
in figure 5 are given in brackets). Then the next step would be to say that model ele-
ments a and b belong together as they are instances of A and B. To be more specific we
could assume A and B to be meta-classes of performance figures (ontology construct I)
and the task would be to sum up all monetary figures (ontology construct II) of mod-
els 1 and 2. Ontology construct III now could stand for quantity figures. We see that

Metamodeling as an Integration Concept 47

a is a quantitiy figure then and should therefore not be added up to b. This conclusion
can not be drawn with the information provided by the linguistic metamodeling process
but only because of the additional information originating from the lifting of the model
constructs.

Of course, one could argue now that the distinction between monetary and quantity
figures could have been realized on the metamodel-layer as well. Basically, this is true
but not really preferable because of a very specific feature of ontologies: They are by
definition commonly accepted within communities as they reflect a shared and some-
times even standardized conceptualization5 compared to metamodels that are often only
valid for specific tools or organizations. The advange of lifting (meta-)model concepts
to ontology concepts is therefore founded in a reduced mapping complexity. If n meta-
models are to be mapped with each other the complexity of n ∗ (n − 1)/2 ≈ O(n2)
in the case of bidirectional point-to-point mappings can be reduced to O(n) with one
intermediate ontology.

Applying ontologies for semantic markup also allows for making use of all research
results in the field of ontology mapping – see [49] or [50] for introducing surveys.

Recapitulatory, we believe that the combination of metamodeling and ontologies
provides excellent means to solve the task of extensive integration and interoperability
handling all syntactical, structural and semantic heterogeneity. Some related work in
this context can be found in [47] who deal with model transformations in the area of
software engineering. [51] also utilizes the idea of ontology-based transformation but
like in the aforementioned papers the use of lifting is restricted to the metamodel layer.
An approach that makes use of lifting on all (meta-)model layers can be found in [52].

5 Conclusions and Outlook

In this paper we described the results of a literature survey that aimed for identifying
basic applications of the metamodeling concept. In the course of doing so, we found
that metamodels are basically used for two main purposes, that is to say design and
integration, and we have described some of the existing work we came across. Fur-
thermore, we delivered an insight into the important field of semantic integration and
interoperability showing how metamodels can be enriched with ontology concepts. We
are convinced that this approach will greatly enhance integration and interoperability
both on the conceptual (EMI) as well as on the technical level (EAI).

Method engineering for the combination of modeling paradigms is another impor-
tant metamodel application scenario which will bring together descriptive-, decision
support-, and predicative models. Model-driven business engineering will help for man-
aging the interdependencies of corporations’ elements.

Further research work in the area of metamodels can focus on one of these identified
applications. Another option is to elaborate on the two other aspects of metamodeling
identified in figure 1: How metamodels are actually realized or how the identified tasks
are implemented in practice.

5 [48] denotes this type of ontologies as reference ontologies.

48 D. Karagiannis and P. Höfferer

References

1. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques. Morgan
Kaufmann series in data management systems, 2nd edn. Morgan Kaufman, Amsterdam (2005)

2. Garshol, L.M.: Metadata? Thesauri? Taxonomies? Topic Maps! Making sense of it all. Jour-
nal of Information Science 30, 378–391 (2004)

3. Obrst, L.: Ontologies for Semantically Interoperable Systems. In: CIKM 2003: Proceedings
of the Twelfth International Conference on Information and Knowledge Management, pp.
366–369. ACM Press, New York (2003)

4. Whitten, J.L., Bentley, L.D., Dittman, K.C.: Systems analysis and design methods, 6th edn.
McGraw-Hill Irwin, Boston (2004)

5. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien (1973)
6. Strahringer, S.: Metamodellierung als Instrument des Methodenvergleichs: eine Evaluierung

am Beispiel objektorientierter Analysemethoden. Berichte aus der Betriebswirtschaft.
Shaker, Aachen (1996)

7. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff - Part I:
The Basic Stuff (2000)

8. Kühn, H.: Methodenintegration im Business Engineering. PhD thesis, Universität Wien,
Wien (2004)

9. Object Management Group: MDA Guide Version 1.0.1 (2003)
10. Chen, P.P.S.: The entity-relationship model - toward a unified view of data. ACM Transac-

tions on Database Systems 1, 9–36 (1976)
11. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE

Software 20, 36–41 (2003)
12. Karagiannis, D., Junginger, S., Strobl, R.: Introduction to Business Process Management

Systems Concepts. In: Business Process Modelling, pp. 81–106. Springer, Berlin Heidelberg
(1996)

13. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozemodellierung auf der Grundlage.
Ereignisgesteuerter Prozeketten (EPK) (1992)

14. Kühn, H., Bayer, F., Junginger, S., Karagiannis, D.: Enterprise Model Integration. In:
Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) E-Commerce and Web Technologies, 4th
International Conference, EC-Web, Prague, Czech Republic, September 2-5, 2003, pp. 379–
392. Springer, Berlin Heidelberg (2003)

15. Kühn, H., Murzek, M.: Interoperability Issues in Metamodelling Platforms. In: Konstantas,
D., Bourriéres, J.P., Léonrad, M., Boudjlida, N. (eds.) Interoperability of Enterprise Software
and Applications, pp. 216–226. Springer, Heidelberg (2006)

16. Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N., Sellis, T.K.: ARKTOS: to-
wards the modeling, design, control and execution of ETL processes. Information Sys-
tems 26, 537–561 (2001)

17. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A generic and
customizable framework for the design of ETL scenarios. Information Systems 30, 492–525
(2005)

18. Nikolaidou, M., Anagnostopoulos, D.: A Systematic Approach for Configuring Web-Based
Information Systems. Distributed and Parallel Databases 17, 267–290 (2005)

19. Wagner, G.: The Agent-Object-Relationship metamodel: towards a unified view of state and
behavior. Information Systems 28, 475–504 (2003)

20. Jarke, M., Jeusfeld, M.A., Peters, P., Pohl, K.: Coordinating Distributed Organizational
Knowledge. Data & Knowledge Engineering 23, 247–268 (1997)

21. Rolland, C., Souveyet, C., Moreno, M.: An Approach for Defining Ways-of-Working. Infor-
mation Systems 20, 337–359 (1995)

Metamodeling as an Integration Concept 49

22. Chiu, D.K.W., Li, Q., Karlapalem, K.: A Meta Modeling Approach to Workflow Manage-
ment Systems Supporting Exception Handling. Information Systems 24, 159–184 (1999)

23. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for busi-
ness process support. Data & Knowledge Engineering 53, 129–162 (2005)

24. Rosemann, M., Green, P.: Developing a meta model for the Bunge-Wand-Weber ontological
constructs. Information Systems 27, 75–91 (2002)

25. Kayed, A., Colomb, R.M.: Using BWW model to evaluate building ontologies in CGs for-
malism. Information Systems 30, 379–398 (2005)

26. Herbst, H.: Business Rules in Systems Analysis: a Meta-Model and Repository System. In-
formation Systems 21, 147–166 (1996)

27. Krishna, P.R., Karlapalem, K., Chiu, D.K.W.: An EREC framework for e-contract modeling,
enactment and monitoring. Data & Knowledge Engineering 51, 31–58 (2004)

28. Peters, R.J., Ozsu, M.T.: Reflection in a Uniform Behavioral Object Model. In: Proceedings
of the 12th International Conference on Entity-Relationship Approach, pp. 34–45 (1993)

29. Kim, D.H., Park, S.J.: FORM: A Flexible Data Model for Integrated CASE Environments.
Data & Knowledge Engineering 22, 133–158 (1997)

30. Bowers, S., Delcambre, L.: Using the uni-level description (ULD) to support data-model
interoperability. Data & Knowledge Engineering 59, 511–533 (2006)

31. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge about
information systems. ACM Trans. Inf. Syst. 8, 325–362 (1990)

32. Mylopoulos, J.: Conceptual Modeling and Telos. In: Loucopoulos, P., Zicari, R. (eds.) Con-
ceptual Modeling, Databases and Case: an integrated view of information systems develop-
ment, pp. 49–68. Wiley, New York (1992)

33. Zaniolo, C., Melkanoff, M.A.: A Formal Approach to the Definition and the Design of Con-
ceptual Schemata for Database Systems. ACM Trans. Database Syst. 7, 24–59 (1982)

34. Cheung, W., Hsu, C.: The model-assisted global query system for multiple databases in dis-
tributed enterprises. ACM Trans. Inf. Syst. 14, 421–470 (1996)

35. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and Quality in Data Ware-
houses: An Extended Repository Approach. Information Systems 24, 229–253 (1999)

36. Hillegersberg, J.V., Kumar, K.: Using Metamodeling to Integrate Object-Oriented Analysis,
Design and Programming Concepts. Information Systems 24, 113–129 (1999)

37. ter Hofstede, A.H.M., Verhoef, T.F.: On the Feasibility of Situational Method Engineering.
Information Systems 22, 401–422 (1997)

38. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques for
Situational Method Engineering. Information Systems 24, 209–228 (1999)

39. Dominguez, E., Zapata, M.A.: Noesis: Towards a situational method engineering technique.
Information Systems (in press)

40. Beydoun, G., Gonzalez-Perez, C., Low, G., Henderson-Sellers, B.: Synthesis of a generic
MAS metamodel. In: ACM SIGSOFT Software Engineering Notes: SELMAS 2005: Pro-
ceedings of the fourth international workshop on Software engineering for large-scale multi-
agent systems, pp. 1–5. ACM Press, New York (2005)

41. Prakash, N.: On Methods Statics and Dynamics. Information Systems 24, 613–637 (1999)
42. Nissen, H.W., Jarke, M.: Repository Support for Multi-Perspective Requirements Engineer-

ing. Information Systems 24, 131–158 (1999)
43. Kalfoglou, Y., Schorlemmer, M., Uschold, M., Sheth, A., Staab, S.: Semantic Interoperability

and Integration. In: Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.)
Semantic Interoperability and Integration. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Dagstuhl, Germany (2005)

44. Alexiev, V., Breu, M., de Bruijn, J., Fensel, D. (eds.): Information Integration with Ontolo-
gies: Experiences from an Industrial Showcase. John Wiley & Sons, Chichester (2005)

50 D. Karagiannis and P. Höfferer

45. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In: IEEE Computer Society(ed.). IEEE International Conference on
Web Services (ICWS 2005), pp. 321–328 (2005)

46. Doan, A., Noy, N.F., Halevy, A.Y.: Introduction to the Special Issue on Semantic Integration.
SIGMOD Record 33, 11–13 (2004)

47. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.,
Schwinger, W., Wimmer, M.: On Models and Ontologies - A Layered Approach for Model-
based Tool Integration. In: Mayr, H.C., Breu, R. (eds.) Modellierung 2006, pp. 11–27 (2006)

48. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998, pp.
3–15. IOS Press, Amsterdam (1998)

49. Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: The State of the Art. In: Kalfoglou, Y.,
Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic Interoperability and
Integration. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Dagstuhl, Germany (2005)

50. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record 33, 65–70 (2004)

51. Roser, S., Bauer, B.: Ontology-Based Model Transformation. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 355–356. Springer, Heidelberg (2005)

52. Terrasse, M.N., Savonnet, M., Leclercq, E., Grison, T., Becker, G.: Do we need metamodels
AND ontologies for engineering platforms?. In: GaMMa 2006: Proceedings of the 2006
international workshop on Global integrated model management, pp. 21–28. ACM Press,
New York (2006)

Appendix A

A total of 18 journals has been surveyed whereas 11 delivered search results according
to our defined nine search strings (see section 1). The surveyed journals are as follows
[number of relevant retrieved documents is given in brackets]:

– Data & Knowledge Engineering [6]
– Expert Systems: The International Journal of Knowledge Engineering and Neural

Networks [3]
– IEEE Transactions on Knowledge and Data Engineering (T-KDE) [2]
– ACM Transactions on Information Systems (TOIS; Formerly: ACM Transactions

on Office Information Systems) [3]
– Communications of the Association for Information Systems (CAIS) [0]
– Electronic Journal of Information Systems Evaluation (EJISE) [0]
– Information Systems [21]
– Information Systems Research [4]
– Journal of Intelligent Information Systems [0]
– Journal of the Association for Information Systems (JAIS) [0]
– ACM SIGSOFT Software Engineering Notes [10 selected out of 87]
– ACM Transactions on Software Engineering and Methodology (TOSEM) [15]
– Empirical Software Engineering [0]
– IEE Proceedings (sic!) - Software Engineering [0]
– IEEE Transactions on Software Engineering (T-SE) [7]
– VLDB Journal, The - The International Journal on Very Large Databases [0]
– Distributed and Parallel Databases [1]
– ACM Transactions on Database Systems (TODS) [5]

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 51–58, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Engineering Object and Agent Methodologies

B. Henderson-Sellers

University of Technology, Sydney, Australia
brian@it.uts.edu.au

Abstract. Method engineering provides an excellent base for constructing
situation-specific software engineering methodologies for both object (OO) and
agent (AO) software development. Both the OPEN Process Framework (OPF)
and the Framework for Agent-oriented Method Engineering (FAME) use an ex-
isting repository coupled to an appropriate metamodel (which in the near future
will be the new ISO standard metamodel ISO/IEC 24744, itself based on the
concept of powertypes). This flexible, yet standardized, repository supplies
method fragments that are then configured to support specific projects. In addi-
tion, all existing, and new, OO and AO methodologies can be recreated, thus
providing an industry strength resource for object-oriented and agent-oriented
software development.

1 Methodologies and Method Engineering

Methodologies (a.k.a. methods) for software and systems development need to sup-
port developers in their endeavours. They need to contain a large number of descrip-
tive/prescriptive elements, including information on appropriate tools and techniques,
descriptions of organizational roles, project management advice and an underlying
process model [14]. They should support (possibly creating) organizational standards,
offering guidance and support, monitoring and control advice such that successful
development can be repeated and failures learned from and duplicate mistakes
avoided in the future. However, when created in vacuo, they are often not well suited
to practice [21] which has led in some authors’ views to a backlash [4] or them even
being seen as a “waste of time” [5]. Nevertheless, it is worth pursuing the notion that
a methodology can offer useful practical support for industry developers but only if
the methodology is attuned to a specific organization and/or its projects. Tuning an
existing comprehensive or heavyweight methodology can be time-consuming, the
alternative being a bottom-up construction of a methodology from small methodo-
logical pieces (known as “fragments”). This is called situational method engineering
(SME) [20], [23] and will be explored here.

In SME, method fragments [8] are stored in a repository or methodbase [25], [9]
and are retrieved on a project-specific basis. These selected fragments are then “glued
together” in an appropriate manner to create the situationally-specific methodology.

One such repository of method fragments belongs to the OPEN approach [13],
[18], (http://www.open.org.au, http://www.opfro.org). In this paper, we briefly outline
this approach, in terms of object-oriented method fragments (Section 2) and then il-
lustrate how this has been more recently extended [15] to accommodate agent-
oriented method fragments. Such an extension forms part of the FAME (Framework

52 B. Henderson-Sellers

for Agent-oriented Method Engineering) project (Section 3), which not only aims to
complete the suite of agent-oriented fragments but also to replace OPEN’s metamodel
(see Appendix G of [11]) by the new ISO/IEC 24744 SEMDM (Software Engineering
Metamodel for Development Methodologies) standard (see e.g. descriptions of early
drafts in [17]).

2 Existing OO Method Fragments in the Open Repository

The OPEN Process Framework (OPF) [13], [11] is defined by a metamodel that supports
the concepts of method engineering (Figure 1). It provides a rich repository of over a
thousand method fragments, which can be used in different software projects, together
with a set of guidelines offering advice on the fragment selection based on the notion of
possibility matrices linking each pair of method fragments [19] – see Figure 2.

Method fragments
Repository

Methodology Instance

Step 2: Project Manager

Construction
Guidelines

uses

Metamodel

instance of

instances of

Methodology M

Step 1: Method
engineer

Method fragmentsMethod fragments
Repository

Methodology Instance

Step 2: Project Manager

Methodology Instance

Step 2: Project Manager

Construction
Guidelines

uses

Construction
Guidelines

uses

Metamodel

instance ofinstance of

instances ofinstances of

Methodology M

Step 1: Method
engineer

Methodology MMethodology M

Step 1: Method
engineer

Fig. 1. Method engineering using the OPF

T
ec

hn
iq

ue
s Tasks

M
D
D
F
F
R
D
D
R
O
F

D
D
D
O
M
R
R
F
R
D
M

F
F
O
O
O
M
F
M
D
O
O

F
F
O
O
D
R
M
D
R
O
F

F
D
D
F
F
O
O
D
R
R
DT

ec
hn

iq
ue

s Tasks
M
D
D
F
F
R
D
D
R
O
F

D
D
D
O
M
R
R
F
R
D
M

F
F
O
O
O
M
F
M
D
O
O

F
F
O
O
D
R
M
D
R
O
F

F
D
D
F
F
O
O
D
R
R
D

Fig. 2. Method fragments are linked using a deontic matrix, here for Tasks and Techniques
(showing five levels of possibility from F= Forbidden, through D=Discouraged, O=Optional,
R=Recommended to M=Mandatory)

In OPF’s metamodel, there are elements to describe process fragments such as Ac-
tivities, Tasks and Techniques; people components such as Producers and Roles; or-
ganizational components, such as Enterprise, Programme and Project, and product
fragments in the form of a whole range of Work Products including diagrams and

 Engineering Object and Agent Methodologies 53

documents, supported by various kinds of languages (natural language, modelling
language and coding language). Method construction may be top-down or bottom-up.
Using the former as an example, the method engineer would select appropriate Activi-
ties from the OPF fragment repository and then, using the possibility (or deontic) ma-
trix approach, choose appropriate Tasks, Techniques, Producers, Work products etc.

3 The Fame Project: New AO Method Fragments and a New
Metamodel

3.1 AO Fragments

In order to add AO fragments to the OPF repository, each of the extant AO methodolo-
gies (such as Gaia, Tropos or Prometheus) was analysed and fragments extracted. These
fragments were those encapsulating either brand new (AO) concepts (for example, the
BDI model [24]) or extensions to existing OO fragments (for example, the Tasks “De-
termine MAS infrastructure facilities” extends the existing OO Task of “Create a system
architecture”). These have been documented in a series of papers, summarized here
in Table 1 – a total of 1 new Activity (“Early requirements analysis” – not shown in
Table 1), 29 new Tasks, 14 new Subtasks, 23 new Techniques and 29 new Work Prod-
ucts (although these numbers may be reduced when/if overlaps are identified).

When reused (by extraction from the repository), fragments can be selected to rec-
reate any specific AO methodology (e.g. Gaia: [27], Tropos: [7], Prometheus: [22]) or
a new hybrid (for example Prometheus enhanced by Tropos - Figure 3, which also
shows linkages between OPF OO and AO Task fragments and Technique fragments
in the form of a deontic matrix, as shown earlier in Figure 2).

Table 1. Summary of Tasks, Techniques and Work Products so far added to OPEN in order to
support agent-oriented software developments. [Note that there is no meaning in any horizontal
alignments].

New Tasks New Techniques New Work Prod-
ucts

Assign goals to responsibilities Activity scheduling Agent acquaintance
diagram

Assign and compose roles Agent delegation strategies Agent class card
Construct agent conversations Agent internal design Agent design model

Construct the agent model AND/OR decomposition
Agent overview

diagram
Define ontologies Belief revision of agents Agent protocol diagram

Design agent internal structure
Capabilities identification and

analysis
Agent structure

diagram
Determine agent

communication protocol
Commitment management

CAMLE behaviour
diagram

Determine agent interaction
protocol

Contract nets
CAMLE scenario

diagram
Determine delegation strategy Deliberative reasoning: Plans Coupling Graph
Determine control architecture Control architecture Caste diagram

54 B. Henderson-Sellers

Table 1. (Continued)

New Tasks New Techniques New Work Products
Determine reasoning strategies

for agents
Environmental evaluation

Domain knowledge
ontology

Determine security policy for
agents

Environmental resources
modelling

Functionality de-
scriptor

Determine system operation FIPA KIF compliant language Goal hierarchy diagram
Gather performance

knowledge
Learning strategies for agents Inference diagram

Identify emergent behaviour Market mechanisms
Network design

model
Identify system behaviours Means-end analysis Platform design model

Identify system organization
Organizational rules

specification
Protocol schema

Model actors
Organizational structure

specification
PSM specification

Model agent knowledge Performance evaluation Role diagram
Model agent relationships Reactive reasoning: ECA rules Role schema

Model agents’ roles Task selection by agents Service table
Model capabilities for actors 3-layer BDI model Task hierarchy diagram

Model dependencies for ac-
tors and goals

Task knowledge
specification

Model goals Task textual description

Model plans
(Tropos) Actor Dia-

gram

Model the agent’s environment
(Tropos) Capability

Diagram
Specify shared data objects (Tropos) Goal Diagram

Undertake agent
personalization

 (Tropos) Plan Diagram

New Subtasks to the main Task of:
Define perceptor module

Define actuator module Deter-
mine agent architecture

Design agent internal
structure

Determine agents’ organiza-
tional behaviours

Determine agents’ organiza-
tional roles

Identify sub-organizations
Define organizational rules
Define organizational struc-

tures

Identify System Organization

Model responsibilities
Model permissions

Model agents’ roles

Model environmental re-
sources

Model percepts
Model events

Model the agent’s
environment

Determine MAS infrastructure
facilities

Create a system architecture

 Engineering Object and Agent Methodologies 55

Tasks
Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design
AND/OR decomposition
Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification
Means-end analysis
Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

Tasks
Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design
AND/OR decomposition
Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification
Means-end analysis
Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

Fig. 3. Deontic matrix showing OPF Techniques-Tasks linkages for Prometheus enhanced by
two Techniques from Tropos (viz. AND/OR decomposition and Means-end analysis) (signifi-
cantly modified from [15])

3.2 A New Metamodel

At a higher abstraction level, creating a methodology metamodel to support all current
AO methodologies has been attempted as part of a FIPA (Foundation for Intelligent
Physical Agents) project, in which the newly created metamodel is essentially an ag-
gregation of a number of single-methodology metamodels [6]. In contrast, in the
FAME project, we seek to identify high level commonalities, leaving details for later,
methodology-specific elaboration. With that aim in mind, we identified as a basis for
the FAME metamodel first the Australian methodology metamodel standard AS4651
[26] and then the emerging ISO/IEC 24744 standard, due to be published in late
2006/early 2007 and with strong similarities to AS4651. This metamodel replaces the
strict metamodelling approach (based on instance-of relationships) of the OMG, in
which it is not possible to model both the method and endeavour domain at the same
time, transmitting information to each of them from the metamodel domain, with a
new conceptualization based upon powertype patterns [12]. Although not fitting into a
strict metamodelling mindset, powertypes (and their associated set representation –
Figure 4) provide a solution more aligned to people and their endeavours. With these
three domains (Endeavour, Method and (formal) Metamodel (Figure 5) – in which all
conceptual, powertype models exist), attributes can be assigned either to (i) the xxx
element in the metamodel from which a method level entity1 can inherit or (ii) the
xxxKind element in the metamodel from which a slot value can be instantiated in the
method level entity. In the first case, the inherited attribute is then given a slot value
at the next level i.e. that of the Endeavour. In the second case, the value given at the
method level acts a little like a Class attribute does in OO programming.

1 Actually this is a clabject (Atkinson, 1998; Atkinson and Kühne, 2000), which is defined as

having both an object facet and a class facet.

56 B. Henderson-Sellers

DocumentKind is a
powertype

Req. Spec. Doc.

DocumentKind

name : String
mustBeApproved: Bool

Document

title : String
version: Float

title : String
version=Float
Name=Req.Spec.Doc
mustBeApproved: yes

is classified by

MySystem Req. Spec.

title = MySystemReq.Spec.
Version=1.5

and Requirements Specification Document is a clabject

(a)
DocumentKind is a
powertype

Req. Spec. Doc.

DocumentKind

name : String
mustBeApproved: Bool

DocumentKind

name : String
mustBeApproved: Bool

Document

title : String
version: Float

title : String
version=Float
Name=Req.Spec.Doc
mustBeApproved: yes

is classified by

MySystem Req. Spec.

title = MySystemReq.Spec.
Version=1.5

and Requirements Specification Document is a clabject

(a)

x
x

x
x

xx
x

x

x
x

x

x

x

Req. Spec.

Project plan
Test

Document class

x

mySystem Req.Spec.

DocumentKind class

x

x

x Project plan

Test
Req.Spec.

DocumentKind is a Powertype
i.e. a set of all subsets of
another set as defined by a
given discriminator

(b)

x
x

x
x

xx
x

x

x
x

x

x

x

Req. Spec.

Project plan
Test

Document class

xx

mySystem Req.Spec.

DocumentKind class

x

x

x Project plan

Test
Req.Spec.

DocumentKind is a Powertype
i.e. a set of all subsets of
another set as defined by a
given discriminator

(b)

Fig. 4. Powertypes expressed in (a) a UML-style diagram and (b) Venn diagrams (representa-
tion as sets)

endeavour

method

metamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality tools

endeavourendeavour

methodmethod

metamodelmetamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality toolsmethodologiesmethodologies assessmentassessment qualityquality toolstools

Fig. 5. Revised metalevel hierarchy based on practice as well as theory (after [16])

 Engineering Object and Agent Methodologies 57

4 Summary

Since it is evident that it is not possible to create a “one-size-fits-all” methodology
(e.g. [10]), other solutions are sought for the challenge of delivering to an industrial
software applications development team an appropriate and site-specific methodol-
ogy. Based on a “standard” set of method fragments in a repository or methodbase,
method engineering provides an excellent paradigm for just such construction of
situation-specific software engineering methodologies for both object and agent soft-
ware development. We have illustrated this approach here both in terms of the OPEN
Process Framework (OPF) and the Framework for Agent-oriented Method Engineer-
ing (FAME) and indicated future alignment with the new ISO standard metamodel
ISO/IEC 24744.

Such a flexible, yet standardized, repository supplies method fragments that are
then configured to support specific projects. In addition, all existing, and new, OO
and AO methodologies can be recreated, thus providing an industry strength resource
for object-oriented and agent-oriented software development.

Acknowledgements

The work described here was supported by several grants from the Australian Re-
search Council, whom we thank for financial support. Thanks also to Dr Cesar Gon-
zalez-Perez for his insightful comments on an earlier draft of this manuscript. This is
Contribution number 06/07 of the Centre for Object Technology Applications and
Research at the University of Technology, Sydney.

References

1. Atkinson, C.: Supporting and applying the UML conceptual framework. In: Bézivin, J.,
Muller, P.-A. (eds.) UML 1998. LNCS, vol. 1618, pp. 21–36. Springer, Berlin (1999)

2. Atkinson, C., Kühne, T.: Meta-level independent modelling. In: International Workshop on
Model Engineering at 14th European Conference on Object-Oriented Programming (2000)

3. Atkinson, C., Kühne, T.: Processes and Products in a Multi-level Metamodeling Architec-
ture. Int. J. Software Eng. and Knowledge Eng. 11(6), 761–783 (2001)

4. Avison, D.E.: Information systems development methodologies: a broader perspective, in
Method Engineering. In: Brinkkemper, S., Lyytinen, K., Welke, R.J. (eds.) Principles of
Method Construction and Too Support. Procs. IFIP TC8, WG8.1/8.2 Working Conference
on Method Engineering, Atlanta, USA, August 26-28, 1996, pp. 263–277. Chapman &
Hall, London (1996)

5. Baddoo, N., Hall, T.: De-motivators for software process improvement: an analysis of
practitioners views. Journal of Systems and Software 66, 23–33 (2003)

6. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A Study of Some
Multi-agent Meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

7. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J., Perini, A.: Tropos: an agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

58 B. Henderson-Sellers

8. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Inf. Software Technol. 38(4), 275–280 (1996)

9. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering.
In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 381–400. Springer,
Heidelberg (1998)

10. Cockburn, A.S.: Selecting a project’s methodology. IEEE Software 17(4), 64–71 (2000)
11. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. An Introduction,

p. 330. Addison-Wesley, Reading (2002)
12. Gonzalez-Perez, C., Henderson-Sellers, B.: A Powertype-Based Metamodelling Frame-

work. Software and Systems Modelling 4(4) (2005), DOI 10.1007/210270-005-0099-9
13. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Process Specification, p. 314.

Addison-Wesley, Reading (1997)
14. Henderson-Sellers, B.: Who needs an OO methodology anyway? J. Obj.-Oriented Pro-

gramming 8(6), 6–8 (1995)
15. Henderson-Sellers, B.: Creating a comprehensive agent-oriented methodology - using

method engineering and the OPEN metamodel. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, Idea Group, ch. 13, pp. 368–397 (2005)

16. Henderson-Sellers, B.: Method engineering: theory and practice. In: Karagiannis, D.,
Mayr, H.C. (eds.) 5th International Conference ISTA 2006. Klagenfurt, Austria (eds, Kla-
genfurt, Austria, May 30-31, 2006. Lecture Notes in Informatics (LNI) – Proceedings,
vol. P-84, pp. 13–23. Gesellschaft für Informatik, Bonn (2006)

17. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamodels and
the creation of a new generic standard. Inf. Software Technol. 47(1), 49–65 (2005)

18. Henderson-Sellers, B., Simons, A.J.H., Younessi, H.: The OPEN Toolbox of Techniques,
p. 426. Addison-Wesley, UK (1998)

19. Henderson-Sellers, B., Haire, B., Lowe, D.: Using OPEN’s deontic matrices for e-
business. In: Rolland, C., Brinkkemper, S., Saeki), M. (eds.) Engineering Information Sys-
tems in the Internet Context, pp. 9–30. Kluwer Academic Publishers, Boston (2002)

20. Kumar, K., Welke, R.J.: Methodology Engineering: a Proposal for Situation-Specific
Methodology Construction. In: Cotterman, W.W., Senn, J.A. (eds.) Challenges and Strate-
gies for Research in Systems Development, pp. 257–269. John Wiley & Sons, Chichester
(1992)

21. Lyytinen, K.: Different perspectives on information systems: problems and solutions.
ACM Computer Surveys 19(1), 5–46 (1987)

22. Pagdham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide.
Wiley, Chichester (2005)

23. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic method for situational method
engineering, Advanced Information Systems Engineering. In: Eder, J., Missikoff, M. (eds.)
CAiSE 2003. LNCS, vol. 2681, pp. 95–110. Springer, Heidelberg (2003)

24. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Procs. First Interna-
tional Conference on Multi Agent Systems, San Francisco, CA, USA, pp. 312–319 (1995)

25. Saeki, M., Iguchi, K., Wen-yin, K., Shinohara, M.: A meta-model for representing soft-
ware specification & design methods. In: Procs. IFIP WG8.1 Conf. on Information Sys-
tems Development Process, Come, pp. 149–166 (1993)

26. Standards Australia, Standard Metamodel for Software Development Methodologies, AS
4651-2004, Standards Australia, Sydney (2004)

27. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transaction on Software Engineering and Methodology 12(3), 317–
370 (2003)

PART I

Programming Languages

From Static to Dynamic Process Types

Franz Puntigam

Technische Universität Wien, Argentinierstr. 8, 1040 Vienna, Austria
franz@complang.tuwien.ac.at

Abstract. Process types – a kind of behavioral types – specify constraints on
message acceptance for the purpose of synchronization and to determine object
usage and component behavior in object-oriented languages. So far process types
have been regarded as a purely static concept for Actor languages incompati-
ble with inherently dynamic programming techniques. We propose solutions of
related problems causing the approach to become useable in more conventional
dynamic and concurrent languagues. The proposed approach can ensure message
acceptability and support local and static checking of race-free programs.

Keywords: Process types, synchronization, type systems, race-free programs.

1 Introduction

Process types [1] represent a behavioral counterpart to conventional object types: They
support subtyping, genericity, and separate compilation as conventional types. Addi-
tionally they specify abstractions of object behavior. Abstract behavior specifications
are especially desirable for software components, and they can be used for synchro-
nization. Both concurrent and component-based programming are quickly becoming
mainstream programming practices, and we expect concepts like process types to be
important in the near future. However, so far process types are not usable in mainstream
languages:

1. Their basis are active objects communicating by message passing [2]. Variables are
accessible only within single threads. In mainstream languages like Java, threads
communicate through shared (instance) variables; one thread reads values written
by another. To support such languages we must extend process types with support
of shared variables.

2. Process types are static. Object state changes must be anticipated at compilation
time. We must adapt process types to support dynamic languages like Smalltalk
(using dynamic process type checking).

Support of dynamic languages turns out to be a good basis for supporting communi-
cation through shared variables. Hence, we address mainly the second issue and show
how dynamic type checking can deal with the first issue.

We introduce the basic static concept of process types for a conventional (Java-like)
object model in Section 2. Then, we add support of dynamic synchronization in Sec-
tion 3 and of shared variables with late type checking in Section 4. Local and static
checking of race-free programs is rather easy in our setting as discussed in Section 5.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 61–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 F. Puntigam

P ::= unit*
unit ::= class c [< c+]opt is [token x+]opt def + |

type c [< c+]opt is [token x+]opt decl+

decl ::= m(par* [with ctok]opt) [: t]opt

def ::= v : c | decl do s+ | new(par*): t do s+

par ::= v : c [[ctok]]opt

ctok ::= tok+-> tok* | -> tok+

tok ::= x [.n]opt

t ::= c [[tok+]]opt

s ::= v : t= e | v = e | e | return [e]opt | fork e
e ::= this | v | c | n | e.m(e*) | null
c ∈ class and type names
x ∈ token names
m ∈ message selectors
v ∈ variable names
n ∈ natural number literals

Fig. 1. Syntax of TL1

2 Static Process Types

Figure 1 shows the grammar of TL1 (Token Language 1) – a simple Java-like language
we use as showcase. We differentiate between classes and types without implementa-
tions. To create a new object we invoke a creator new in a class. Type annotations fol-
low after “:”. Token declarations (names following the keyword token), tokens occur-
ring within square brackets in types, and with-clauses together determine the statically
specified object behavior.

The first example shows how tokens allow us to specify constraints on the accept-
ability of messages:

type Buffer is
token empty filled
put(e:E with empty->filled)
get(with filled->empty): E

According to the with-clause in put we can invoke put only if we have an empty;
this token is removed on invocation, and filled is added on return. For x of type
Buffer[empty] – a buffer with a single token empty – we invoke x.put(..). This
invocation changes the type of x to Buffer[filled]. Next we invoke x.get(), then
x.put(..), and so on. Static type checking enforces put and get to be invoked in
instances of Buffer[empty] in alternation. Type checking is simple because we need
only compare available tokens with tokens required by with-clauses and change tokens
as specified by with-clauses [1].

The type Buffer[empty.8 filled.7] denotes a buffer with at least 8 filled and
7 empty slots. An instance accepts put and get in all sequences such that the buffer
never contains more that 15 or less than zero elements as far as the client knows.

In the next example we show how to handle tokens in parameter types similarly as
in with-clauses:

From Static to Dynamic Process Types 63

class Test is
play(b:Buffer[filled->filled])
do e:E = b.get() -- b:Buffer[empty]

e = e.subst() -- another e
b.put(e) -- b:Buffer[filled]

copy(b:Buffer[empty filled->filled.2])
do e:E = b.get() -- b:Buffer[empty.2]

b.put(e) -- b:Buffer[empty filled]
b.put(e) -- b:Buffer[filled.2]

Let y be of type Buffer[empty.2 filled.2] and x of type Test. We can invoke
x.play(y) since y has the required token filled. This routine gets an element from
the buffer, assigns it to the local variable e (declared in the first statement), assigns a
different element to e, and puts this element into the buffer. Within play the buffer
is known to have a single filled slot on invocation and on return. For the type of b
specified in the formal parameter list it does not matter that the buffer has been empty
meanwhile and the buffer contents changed. After return from play variable y is still
of type Buffer[empty.2 filled.2].

Invocations of copy change argument types: On return from x.copy(y) variable
y will be of type Buffer[empty filled.3]. Removing tokens to the left of -> on
invocation causes the type to become Buffer[empty filled], and adding the tokens
to the right on return causes it to become Buffer[empty filled.3].

Parameter passing does not produce or consume tokens. Tokens just move from the
argument type to the parameter type on invocation and vice versa on return. Only with-
clauses can actually add tokens to and remove them from an object system. This is a
basic principle behind the idea of tokens: Each object can produce and consume only
its own tokens.

A statement ‘fork x.copy(y)’ spawns a new thread executing x.copy(y). Since
the execution continues without waiting for the new threads, invoked routines can-
not return tokens. The type of y changes from Buffer [empty.2 filled.2] to
Buffer[empty filled]. The type of y is split into two types – the new type of y
and the type of b. Both threads invoke routines in the same buffer without affecting
each other concerning type information.

Assignment resembles parameter passing in the case of spawning threads: We split
the type of an assigned value into two types such that one of the split types equals the
current static type of the variable, and the remaining type becomes the new type of
the assigned value. Thereby, tokens move from the value’s to the variable’s type. If the
statically evaluated type of v is Buffer[empty.2] and y is of type Buffer[empty.2
filled.2], then v=y causes y’s type to become Buffer[filled.2].

Local variables are visible in just a single thread of control. This property is impor-
tant because it allows us to perform efficient type checking by a single walk through the
code although variable types can change with each invocation. Because of explicit for-
mal parameter types we can check each class separately. If variables with tokens in their
types were accessible in several threads, then we must consider myriads of possible
interleavings causing static type checking to become practically impossible. Instance
variables can be shared by several threads. To support instance variables and still keep

64 F. Puntigam

def ::= v : c | decl [when ctok]opt do s+ |
new(par*): t [-> tok+]opt do s+

Fig. 2. Syntax of TL2 (Differences to TL1)

the efficiency of type checking we require their types to carry no token information. We
address this restriction in Section 4.

Explicit result types of creators play a quite important role for introducing tokens
into the system:

class Buffer1 < Buffer is
s:E -- single buffer slot
put(e:E with empty->filled) do s=e
get(with filled->empty):E do return s
new(): Buffer1[empty] do null

Class Buffer1 inherits empty and filled from Buffer. An invocation of Buffer1.
new() returns a new instance with a single token empty. No other token is initially
available. Since invocations of put and get consume a token before they issue an-
other one, there is always at most one token for this object. No empty buffer slot can
be read and no filled one overwritten, and we need no further synchronization even if
several threads access the buffer. The use of tokens greatly simplifies the implemen-
tation. However, this solution is inherently static and does not work in more dynamic
environments.

3 Dynamic Tokens

The language TL2 (see Figure 2) slightly extends TL1 with dynamic tokens for syn-
chronization. This concept resembles more conventional synchronization like that in
Java. There is no need to anticipate such synchronization at compilation time.

We associate each object with a multi-set of tokens (token set for short) to be ma-
nipulated dynamically. TL2 differs from TL1 by optional when-clauses in routines and
optional initial dynamic tokens (following ->) in creators. Tokens to the left of -> in
when-clauses must be available and are removed before executing the body, and tokens
to the right are added on return. Different from with-clauses, when-clauses require
dynamic tokens to be in the object’s token set and change this token set. If required
dynamic tokens are not available, then the execution is blocked until they become avail-
able. Checks for token availability occur only at run time. The following variant of the
buffer example uses static tokens to avoid buffer overflow and underflow, and dynamic
tokens to ensure mutual exclusion:

class Buffer50 < Buffer is
token sync
lst: List
new(): Buffer50[empty.50] ->sync do

lst = List.new()
put(e:E with empty->filled)

From Static to Dynamic Process Types 65

when sync->sync do lst.addLast(e)
get(with filled->empty): E
when sync->sync do

return lst.getAndDeleteFirst()

The creator introduces just a single token sync. Both put and get remove this token
at the begin and issue a new one on return. Clients need not know about the mutual
exclusion of all buffer operations. Of course we could use only dynamic tokens which
is more common and provides easier handling of buffers.

Static and dynamic tokens live in mostly independent worlds. Nonetheless we have
possibilities to move tokens from the static to the dynamic world and vice versa as
shown in the following example:

class StaticAndDynamic is
token t
beDynamic(with t->) when ->t do null
beStatic(with ->t) when t-> do null
new(): StaticAndDynamic[t] do null

There always exists only a single token t for each instance, no matter how often and
from how many threads we invoke beDynamic and beStatic.

The major advantage of our approach compared to concepts like semaphores and
monitors is the higher level of abstraction. It is not so easy to “forget” to release a lock
as often occurs with semaphores, and it is not necessary to handle wait queues using
wait and notify commands as with monitors. For static tokens we need not execute
any specific synchronization code at all. This synchronization is implicit in the control
flow.

4 Dynamic Typing

In TL1 and TL2 we constrained the flexibility of the language to get efficient static
type checking: Types of instance variables cannot carry tokens. In this section we take
the position that static type checking is no precondition for the token concept to be
useful. We want to increase the language’s flexibility (by supporting tokens on instance
variables) and nonetheless ensure that synchronization conditions expressed in with-
clauses are always satisfied. An error shall be reported before invocations if required
tokens are not available.

Figure 3 shows the grammar of TL3 that differs form TL2 just by missing type anno-
tations on formal parameters and declarations. However, without type annotations there
is no explicit information about available tokens. We handle this information dynami-
cally. One kind of type annotation is left in TL3: Types of new instances returned by

decl ::= m(v* [with ctok]opt)
def ::= v: | decl [when ctok]opt do s+ |

new(v*): t [-> tok+]opt do s+

s ::= v := e | v = e | e | return [e]opt | fork e

Fig. 3. Syntax of TL3 (Differences to TL1–TL2)

66 F. Puntigam

creators must be specified explicitly because tokens in this type together with with-
clauses determine which routines can be invoked. Such types are part of behavior spec-
ifications. Except of type annotations the following example in TL3 equals Buffer50:

type BufferDyn is
token empty filled
put(e with empty->filled)
get(with filled->empty)

class Buffer50Dyn < BufferDyn is
token sync
lst:
new():Buffer50Dyn[empty.50]->sync do

lst = List.new()
put(e with empty->filled)
when sync->sync do lst.addLast(e)

get(with filled->empty)
when sync->sync do

return lst.getAndDeleteFirst()

The following example gives an intuition about the use of static tokens in a dynamic
language. An open window is displayed on a screen or shown as icon:

type Window is
token displ icon closed
setup(with closed->displ)
iconify(with displ->icon)
display(with icon->displ)
close(with displ->closed)

class WindowImpl < Window is
new(): WindowImpl[closed] do ...
...

class WManager is
win:
new(w):WManager do win=w win.setup()
onButton1() do win.iconify()
onButton2() do win.close()
onButton3() do win.display()

Some state changes (directly from an icon to closed, etc.) are not supported. Class
WManager specifies actions to be performed when users press buttons. Under the as-
sumption that a displayed window has only Button 1 and 2 and an icon only Button 3 the
constraints on state changes are obviously satisfied. Since the assumption corresponds
to the existence of at most one token for each window we need nothing else to ensure a
race-free program. We express the assumption by with-clauses and dynamically ensure
them to be satisfied. The variable win must be associated with a (static) token specify-
ing the window’s state. In TL1 and TL2 we cannot express such type information that
is implicit in TL3.

From Static to Dynamic Process Types 67

TL3 deals with dynamic tokens in the same way as TL2. To dynamically handle
information about available static tokens we consider two approaches – TL3flex as a
simple and flexible approach, and TL3strict as a more restrictive and safer approach.

TL3flex. In TL3flex we tread static tokens in a similar way as dynamic tokens: Each
objects contains a pool of static tokens. On invocations tokens to the left of -> in with-
clauses are taken from the pool, and on return those to the right are added to the pool.
An error is reported if the pool does not contain all required tokens.

This approach is very flexible. Each thread can use all previously issued static tokens
no matter which thread caused the tokens to be issued. A disadvantage is a low quality
of error messages because there is no information about the control flow causing tokens
not to be available. Furthermore, there is a high probability for program runs not to
uncover synchronization problems. Thus, program testing is an issue.

TL3strict. To improve error messages and the probability of detecting problems we
dynamically simulate static type checking: Instead of storing static tokens centralized in
the object we distribute them among all references to the object. On invocation we check
and update only tokens associated with the corresponding reference. We must find an
appropriate distribution of tokens among references. In TL1 and TL2 the programmer
had to determine the distribution by giving type annotations. In TL3strict we distribute
tokens lazily as needed in the computation.

Instead of splitting a token set on parameter passing or assignment we associate the
two references with pointers to the (unsplit) token set as well as with a new empty to-
ken set for each of the two references. Whenever required tokens are not available in
the (after assignment or parameter passing empty) token set of a reference we follow
the pointers and take the tokens where we find them. New tokens are stored in the ref-
erences’ own token sets. This way all references get the tokens they need (if available)
and we need not foresee how to split token sets. Repeated application leads to a tree of
token sets with pointers from the leaves (= active references) toward the root (= token
set returned by creator). We report an error only if tokens required at a leaf cannot be
collected from all token sets on the path to the root. On return of invocations we let
actual parameters point to token sets of corresponding formal parameters.

Figure 4 shows an example: Immediately after creating a window there is only one
reference n to it (a). The box contains the single token in the corresponding token set.
When invoking new in WManager using n as actual parameter we construct new token
sets for n and for the formal parameter w (b). When the creator assigns w to win we add
new token sets for w and win (c). An invocation of setup on win removes the token
closed and adds displ. On return from the creator we let the token set of n point to
that of w (d). Now only win carries the single token. We cannot change the window’s
state through n. Therefore, TL3strict is safer and less flexible than TL3flex.

We can build large parts of the structures shown in Figure 4 already at compilation
time by means of abstract interpretation. Most checks for the availability of tokens can
be performed statically. In fact we need dynamic checks of token availability only for
tokens associated with instance variables.

68 F. Puntigam

n := WindowImpl.new()
WManager.new(n)

closed
n

(a)

closed

ε ε
�
��

�
��n w

(b)

closed

ε ε
�
��

�
��n

ε ε
�
��

�
��w win

(c)

ε

ε ε

�
��

�
��n

ε displ
�
��

�
��w win

(d)

Fig. 4. Token Sets per Reference

5 Race-Free Programs

It is possible to ensure race-free programs just by analyzing the tokens in classes. We
use only a single sufficient (but not always necessary) criterion: No two preconditions
in with-clauses and when-clauses of routines accessing the same variable (where an
access is a write) can be satisfied at the same time. To check this criterion we compute
upper bounds on the token sets that can be constructed from the tokens of new instances.
We analyze each class separately.

In the following description of the algorithm to determine upper bounds of token
sets we first consider only static tokens as in TL1. We start with the set of token sets
declared in the result types of the analyzed class’ creators (one token set per creator).
For each with-clause in the class we repeatedly construct new token sets by removing
tokens to the left of -> and adding those to the right from/to each token set constructed
so far containing all required tokens. If a token set contains all tokens occurring in
another token set, then we remove the smaller token set. And if a token set differs from
the token set from which it was constructed just by containing more tokens, then we
increment the token numbers that differ to the special value ∞ indicating infinite grow.
Because of this treatment the algorithm always reaches a fixed point. The algorithm is
accurate in the sense that

– the token set produced for an instance of the class is always a subset of a token set
returned by the algorithm,

– if a token set returned by the algorithm does not contain ∞, then there exists a
sequence of invocations producing exactly this token set,

– and if a token set returned by the algorithm contains ∞, then there exist invocation
sequences producing corresponding tokens without upper bounds.

In TL2 and TL3 we must consider static and dynamic tokens together to get most
accurate results. Since the static and the dynamic world are clearly separated, static and

From Static to Dynamic Process Types 69

dynamic tokens must not be intermixed. We have to clearly mark each token as either
static or dynamic (for example, by an index) and regard differently marked tokens as
different. The algorithm starts with one token set for each creator containing both static
and dynamic tokens. A new token set is constructed by simultaneously removing and
adding tokens as specified in the with- and when-clause of a routine. The result shows
which dynamic tokens can exist together with static tokens. For example, applied to
StaticAndDynamic (see Section 3) the algorithm returns two token sets, one contain-
ing only a static token t and the other only a dynamic token t; in this case no dynamic
token can exist at the same time as a static one.

Once we know the upper bounds it is easy to perform our check of race-free programs
as shown in the following pseudo-code:

let U be the upper-bound set of token sets of class c;
for each instance variable v of c

for each routine r write-accessing v
for each routine s (read or write) accessing v

let p be the union of the token sets
to the left of -> in r and s;

if there is a u ∈ U containing all tokens in p
then issue a warning about a potential race;

otherwise c is race-free

As an example we apply this check to Buffer1 (see Section 2). As upper-bound
set of token sets S we have {{empty}, {filled}}; there is always at most one
token empty or filled. The only instance variable s is written in put and read in
get. Hence, r ranges just over put, s over put and get, and p over {empty.2} and
{empty, filled}. The class is race-free because no token set in S contains two
empty or an empty and a filled.

The set S can become quite large because of combinatorial explosion. For example,
S constructed for Buffer50Dyn contains 51 different token sets – all possibilities of
summing up tokens of two names to 50 tokens. Fortunately, a simple change in the
algorithm to compute upper bounds can reduce the size of S considerably: When com-
puting the fixed point we replace all token numbers larger than 2 · n2 · i by ∞, where
n is the largest total number of tokens to the left of -> in the with- and when-clause
of the same routine, and i is the number of different token names in the class. For
Buffer50Dyn we have n = 2, i = 3, 2 · n2 · i = 24, and S contains just a single token
set {sync,empty.∞,filled.∞}. This optimization does not change the output of
the race-freeness check: Soundness is not affected because the multi-set of supposedly
reachable tokens in a system can just get larger. No token set p (as in the algorithm) can
contain more than 2 · n tokens, and a single token of some name can be generated from
no more than n · i tokens of another name. Therefore, more than 2 · n2 · i tokens of one
name can be ignored for our purpose. Probably there are more accurate estimations, but
we expect this simple one to be sufficient because token numbers to the left of -> are
usually small.

All information needed to check race-free classes is explicit in TL1, TL2, and TL3.
We need no information about formal parameter types and no aliasing information. No
global program analysis is necessary.

70 F. Puntigam

6 Discussion, Related Work

The idea of integrating process types into dynamic languages is new and at a first glance
unexpected because such types were developed to move dynamic aspects like synchro-
nization to the static language level whenever possible [3,1,4]. In some sense the inte-
gration of more advanced static concepts into dynamic languages is a consistent further
development allowing us to use the appropriate (static or dynamic) concept for each
task. Such integration helps us to deepen our understanding of related concepts.

We usually regard synchronization of concurrent threads as a purely dynamic con-
cept: If there is a dependence between two control flows, then one of the corresponding
threads must wait until the other thread has caught up to meet the synchronization point.
Since threads usually run asynchronously and at statically unpredictable speed, it is only
possible to decide at run time whether a thread must wait at a synchronization point.
However, these considerations are valid only at a very low level (close to the hardware)
point of view. From the programmers’ higher level point of view it is quite often not clear
whether there exist dependences between threads or not. Using explicit synchronization
as with monitors, semaphores, rendezvous communication, etc. programmers must add
much more synchronization points than are actually necessary. There are optimization
techniques that can statically eliminate up to about 90% (about 60% in average) of all
locks from Java programs and thereby considerably improve program performance [5].
Probably even more synchronization points are actually not necessary.

Current programming languages allow programmers to write programs with races
although there are many proposals to ensure race-free programs [6,7,8,9]. Applications
of such techniques may lead to further increase of unnecessary synchronization because
no approach can accurately decide between necessary and unnecessary locks. Nonethe-
less, these techniques are very useful because races are an important practical problem
in concurrent programming.

Process types were developed as abstractions over expressions in process calculi [3].
These abstractions specify acceptable messages of active objects and allow the accept-
ability to change over time (thereby specifying synchronization constraints). Static type
checking ensures that only acceptable messages can be sent and enforces all synchroniza-
tion constraints to be satisfied. In this sense type checking in process types has a similar
purpose as ensuring race-free programs. However, process types allow us to specify ar-
bitrary constraints on message acceptability, not just synchronization necessary to avoid
races. In fact, theunderlyingcalculidonot support shared data thatcould suffer fromraces.

There is a clear tendency toward more and more complex interface specifications
going far beyond simple signatures of available routines [10,11,12,13,14,15,16,17,18].
We consider such interfaces to be partial specifications of object behavior [19]. They
are especially valuable to specify the behavior of software components as far as needed
for component composition. Process types are useful as partial behavior specifications
[20,21]. We regard behavior specifications as the major reason for using process types.

Pre- and postconditions in with-clauses allow us to specify a kind of contracts be-
tween components [22,23]. Such contracts clearly specify responsibilities of software
and help us to move responsibilities from one component to another. For example, we
move the responsibility of proper synchronization from the server to the client if we use
with-clauses instead of when-clauses.

From Static to Dynamic Process Types 71

Behavioral types and synchronization of concurrent threads are related topics: Spec-
ifications of object behavior cannot ignore necessary synchronization if we expect com-
ponents composed according to their behavioral types to work together in concurrent en-
vironments, and constraints on message acceptability specify a kind of synchronization.
The present work allows programmers to decide between synchronization globally visi-
ble through the interface (with-clauses) and local synchronization regarded as an imple-
mentation detail (when-clauses). While with-clauses just ensure that clients coordinate
themselves (for example, through the control flow allowing m2() to be invoked only after
m1())when-clauses ensure proper synchronization using more conventional techniques.
Locking does not get visible in interfaces, just synchronization requirements are visible.

Therearegoodreasonsforusinglockingonlyfor localsynchronization:Uncoordinated
locking easily leads to deadlocks and other undesirable behavior, and it is much easier to
coordinate locking within a single unit. The monitor concept supports just local locking
for similar reasons. Furthermore, it is very difficult to deal with globally visible locking
at the presence of subtyping and inheritance [24]. Process types express just synchroniza-
tion conditions in interfaces, they do not provide for locking. Another approach directly
expresses locking conditions in interfaces [25,26]. As experience shows, that approach
easily leads to undesirable locking where it would be more appropriate to raise exceptions.

There are several approaches similar to process types. Nierstrasz [16] and Nielson
and Nielson [27] define behavioral types where subtypes show the same deadlock be-
havior as supertypes, but message acceptability is not ensured. Many further approaches
consider dynamic changes of message acceptability, but do not guarantee message ac-
ceptability in all cases [25,28,29,26,30]. Well known in the area of typed π-calculi [31]
is the work of Kobayashi, Pierce and Turner on linearity [32] which ensures all sent
messages to be acceptable. Work of Najm and Nimour [33] is very similar to process
types except that in their approach at each time only one user can interact with an object
through an interface (no type splitting). These approaches specify constraints on the ac-
ceptability of messages in a rather direct way and do not make use of a token concept.
The use of tokens in behavior specifications gives us high expressiveness and flexibil-
ity, allows us to express synchronization in a way similar to well-known concepts like
monitors and semaphores, and is easily understandable.

7 Conclusions

Behavioral types like process types gain more and more importance especially together
with component composition. By partially specifying object behavior these types ex-
press synchronization in the form of software contracts clearly determining who is re-
sponsible for proper synchronization. Process types use simple token sets as abstrac-
tions over object states.

In this paper we explored how to add process types to rather conventional object-
oriented programming languages. As a showcase we developed the languages TL1 to
TL3. Static type checking in TL1 ensures that all conditions in with-clauses are sat-
isfied, this is, all required tokens are available. We can synchronize concurrent threads
just by waiting for messages. To overcome the restriction, TL2 adds a new dynamic
concept of synchronization based on token sets. Neither TL1 nor TL2 can deal with

72 F. Puntigam

static token sets associated with instance variables because of possible simultaneous
accesses by concurrent threads. In TL3 we dispense with static types and apply one
of two methods to dynamically ensure the availability of required tokens – a flexible
method and one with better error messages and partial support of static type checking.
All variables in TL3 have only dynamic types that can implicitly carry tokens. In the
three languages we can ensure race-free programs by checking each class separately,
without any need of global aliasing information.

Our approach uses token sets for several related purposes – synchronization of con-
current threads and statically and dynamically checked abstract behavior specifications.
It is a major achievement to integrate these concepts because of complicated interrela-
tions. The integration is valuable because it gives software developers much freedom
and at the same time clear contracts and type safety.

Much work on this topic remains to be done. For example, currently our algorithm
can issue warnings about potential races even in purely sequential program parts. Many
other approaches to ensure race-free programs put much effort into detecting sequen-
tial program parts. By integrating such approaches into our algorithm we expect to
considerably improve the accuracy. Most approaches to remove unnecessary locking
from concurrent programs also work on sequential program parts [34,5,35]. We expect
a combination of the techniques to improve run time efficiency.

References

1. Puntigam, F.: Coordination Requirements Expressed in Types for Active Objects. In: Aksit, M.,
Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 367–388. Springer, Heidelberg (1997)

2. Agha,G.,Mason, I.A.,Smith,S.,Talcott,C.:Towardsa theoryofactorcomputation. In:Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 565–579. Springer, Heidelberg (1992)

3. Puntigam, F.: Flexible types for a concurrent model. In: Proceedings of the Workshop on
Object-Oriented Programming and Models of Concurrency, Torino (1995)

4. Puntigam, F.: Concurrent Object-Oriented Programming with Process Types. Der Andere
Verlag, Osnabrück (2000)

5. von Praun, C., Gross, T.R.: Static conflict analysis for multi-threaded object-oriented pro-
grams. In: PLDI 2003, pp. 115–128. ACM Press, New York (2003)

6. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: A dialect of Java without data races. In:
OOPSLA (2000)

7. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java programs. In: OOP-
SLA 2001. ACM, New York (2001)

8. Brinch-Hansen, P.: The programming language Concurrent Pascal. IEEE Transactions on
Software Engineering 1, 199–207 (1975)

9. Flanagan, F., Abadi, M.: Types for Safe Locking. In: Swierstra, S.D. (ed.) ESOP 1999.
LNCS, vol. 1576. Springer, Heidelberg (1999)

10. Arbab, F.: Abstract behavior types: A foundation model for components and their composi-
tion. Science of Computer Programming 55, 3–52 (2005)

11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE), pp. 109–120. ACM Press, New
York (2001)

12. Heuzeroth, D., Reussner, R.: Meta-protocol and type system for the dynamic coupling of
binary components. In: OOSPLA 1999 Workshop on Reflection and Software Engineering,
Bicocca, Italy (1999)

From Static to Dynamic Process Types 73

13. Jacobsen, H.-A., Krämer, B.J.: A design pattern based approach to generating synchroniza-
tion adaptors from annotated IDL. In: IEEE International Conference on Automated Soft-
ware Engineering (ASE 1998), Honolulu, Hawaii, USA, pp. 63–72 (1998)

14. Lee, E.A., Xiong, Y.: A behavioral type system and its application in Ptolemy II. Formal
Aspects of Computing 16, 210–237 (2004)

15. Mezini, M., Ostermann, K.: Integrating independent components with on-demand remodu-
larization. In: OOPSLA 2002 Conference Proceedings, Seattle, Washington, nov 2002, pp.
52–67. ACM Press, New York (2002)

16. Nierstrasz, O.: Regular types for active objects. ACM SIGPLAN Notices 28, 1–15 (1993);
Proceedings OOPSLA 1993

17. Plasil, F., Visnovsky, S.: Behavioral protocols for software components. IEEE Transactions
on Software Engineering 28, 1056–1076 (2002)

18. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac-
tions on Programming Languages and Systems 19, 292–333 (1997)

19. Liskov, B., Wing, J.M.: Specifications and their use in defining subtypes. ACM SIGPLAN
Notices 28, 16–28 (1993); Proceedings OOPSLA 1993

20. Puntigam, F.: State information in statically checked interfaces. In: Eighth International
Workshop on Component-Oriented Programming, Darmstadt, Germany (2003)

21. Südholt, M.: A Model of Components with Non-regular Protocols. In: Gschwind, T., Aßmann,
U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp. 99–113. Springer, Heidelberg (2005)

22. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

23. Meyer, B.: The grand challenge of trusted components. In: ICSE-25 (International Confer-
enceonSoftwareEngineering),Portland,Oregon. IEEE ComputerSocietyPress,LosAlamitos
(2003)

24. Matsuoka, S., Yonezawa, A.: Analysis of inheritance anomaly in object-oriented concur-
rent programming languages. In: Agha, G. (ed.) Research Directions in Concurrent Object-
Oriented Programming, MIT Press, Cambridge (1993)

25. Caromel, D.: Toward a method of object-oriented concurrent programming. Communications
of the ACM 36, 90–101 (1993)

26. Meyer, B.: Systematic concurrent object-oriented programming. Communications of the
ACM 36, 56–80 (1993)

27. Nielson, F., Nielson, H.R.: From CML to process algebras. In: Best, E. (ed.) CONCUR 1993.
LNCS, vol. 715, pp. 493–508. Springer, Heidelberg (1993)

28. Colaco, J.-L., Pantel, M., Salle, P.: A set-constraint-based analysis of actors. In: Proceedings
FMOODS 1997, Canterbury, United Kingdom. Chapman and Hall, Boca Raton (1997)

29. Kobayashi, N., Yonezawa, A.: Type-theoretic foundations for concurrent object-oriented pro-
gramming. ACM SIGPLAN Notices 29, 31–45 (1994); Proceedings OOPSLA 1994

30. Ravara, A., Vasconcelos, V.T.: Behavioural types for a calculus of concurrent objects. In:
Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 554–561.
Springer, Heidelberg (1997)

31. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (parts I and II). Information
and Computation 100, 1–77 (1992)

32. Kobayashi, N., Pierce, B., Turner, D.: Linearity and the pi-calculus. ACM Transactions on
Programming Languages and Systems 21, 914–947 (1999)

33. Najm, E., Nimour, A.: A calculus of object bindings. In: Proceedings FMOODS 1997, Can-
terbury, United Kingdom. Chapman and Hall, Boca Raton (1997)

34. Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis for Java. In:
OOPSLA 1999, Denver, Colorado (1999)

35. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI 2001. ACM,
New York (2001)

Aspectboxes: Controlling the Visibility of Aspects

Alexandre Bergel1, Robert Hirschfeld2, Siobhán Clarke1, and Pascal Costanza3

1 Distributed Systems Group, Trinity College Dublin, Ireland
{Alexandre.Bergel,Siobhan.Clarke}@cs.tcd.ie

2 Hasso-Plattner-Institut,Universität Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

3 Programming Technology Lab, Vrije Universiteit Brussel, Belgium
pascal.costanza@vub.ac.be

Abstract. Aspect composition is still a hot research topic where there is no con-
sensus on how to express where and when aspects have to be composed into a
base system. In this paper we present a modular construct for aspects, called as-
pectboxes, that enables aspects application to be limited to a well defined scope.
An aspectbox encapsulates class and aspect definitions. Classes can be imported
into an aspectbox defining a base system to which aspects may then be applied.
Refinements and instrumentation defined by an aspect are visible only within this
particular aspectbox leaving other parts of the system unaffected.

Keywords: Aspect-oriented programming, aspect composition, scoping change,
aspects, classboxes, squeak.

1 Introduction

Aspect-oriented programming (AOP) promises to improve the modularity of programs
by providing a modularity construct called aspect to clearly and concisely capture the
implementation of crosscutting behavior. An aspect instruments a base software system
by inserting pieces of code called advices at locations designed by a set of pointcuts.

An important focus of current research in AOP is on aspect composition [7,11,13,5].
Ordering and nesting are commonly used when composing aspects and advices [10,
16]. Whereas most aspect languages provide means to compose aspects at a very fine
grained level, experience has shown that ensuring a sound combination of aspects is
a challenging and difficult task [12]. First steps are already taken by AspectJ [10] by
restricting pointcuts to a Java package or a class through the use of dedicated pointcuts
primitives such as within and withincode primitive pointcuts.

If we regard an aspect as an extension to a base system, multiple extensions are
difficult to manage and control, even if they are not interacting with each other. We
believe that the reason for this is the lack of a proper scoping mechanism.

In this paper we define a new modular construct for an aspect language called an
aspectbox. An aspectbox is a modular unit that may contain class and aspect definitions.
Classes can be imported into an aspectbox and the aspect is then applied to the imported
classes. Refinements originated from such aspects are visible only within the aspectbox
that defines this aspect. Outside this aspectbox the base system behaves as if there were
no aspect. Other parts outside a particular aspectbox remain unaffected.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 74–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Aspectboxes: Controlling the Visibility of Aspects 75

In Section 2 we provide an example illustrating the issues when composing aspects.
In Section 4 we describe the aspectboxes module system and its properties. In Section 5
we present our Squeak-based implementation of aspectboxes. Related work is discussed
in Section 6. We conclude by summarizing the presented work in Section 7.

2 Motivation

To motivate the need for limiting the scope of aspects, we use an example based on the
design of a small four-wheel electric car, and its implementation based on a mainstream
aspect language, AspectJ [10].

The CyCab [2] is an electric four wheel car designed to transport up to two people.
The mechanics is taken from a small electrical golf car frame. Functionalities imple-
mented in a CyCab range from an autonomous driving facility (like a coach in a train)
to ultrasonic sensors for collision avoidance. A CyCab is composed of three different
units (driving control, position control and safety control). Each unit is composed of
one or more modules. Figure 1 illustrates the architecture of a CyCab.

Driving Control. A CyCab is steered with a joystick emitting electrical pulses used
by the motion engine to activate the four motored wheels. This feature is provided by
three modules within the driving control unit. The joystick module emits signals that
are captured by the motion engine module. This module controls the wheels.

Position Control. The position control unit computes the velocity and the location of
the CyCab based on the acceleration given by the motion engine to the wheels and their
angle between the car head.

Safety Control. The safety control unit verifies the interactions between the three mod-
ules of the driving control unit. For example, it asserts that pulses emitted by the joystick

Unit

Module

Dependancy

Driving Control

Position Control

Joystick

Position and
Velocity

Motion
Engine Wheels

Safety Control
PowerOff,

Break

Fig. 1. The three units and their modules that compose the CyCab electrical car

76 A. Bergel et al.

trigger the correct reaction in the engine and the wheels reflect the heading dictated by
the joystick. In addition, in the event of failure the power is shut down and communica-
tion between the three modules is cut off.

3 Example Analysis

Behavior defined by the safety control unit crosscuts the whole driving control unit. For
example, the impact of a power shut-down is that the joystick, the motion engine and
wheels are disconnected. This can be easily captured in an aspect that adds behaviour
to check the power status into each affected module, as implemented by the following
AspectJ aspect:

aspect PowerOff {
private boolean hasPower = ...;
pointcut drivingControl():

target(Joystick) && call(public * *(..)) ‖
target(Engine) && call(public * *(..)) ‖
target(Wheels) && call(public * *(..));

void around(): drivingControl() {
if (hasPower == true)

proceed();
}
...

}

The PowerOffAndBreak aspect inserts a check before all public methods of the classes
Joystick, Engine and Wheels to proceed only if power is equal to true. This aspect is
applied to the driving control unit and has to be composed with the PositionAndVelocity
aspect defined by the position control unit:

aspect PositionAndVelocity {
double speed;
pointcut speedUp() : call (* Engine.accelerate());
after(): speedUp() {

//... Speed calculation
}
...

}

PositionAndVelocity inserts a speed calculation functionality after the execution of
the accelerate method. Defining the position and velocity module as an aspect has the
benefit to leave the driving control unit free from referring to the speed and position
computation. The two aspects PowerOffAndBreak and PositionAndVelocity are woven
into the base system, the driving control unit, to form a deployable system. With current
aspect languages such as AspectJ, extensions defined by all aspects are automatically
applied to all the modules in the system (i.e., the physical display screen, the electronic
control unit in charge of the safety).

Aspectboxes: Controlling the Visibility of Aspects 77

This facility is particularly dangerous regarding the implicit sharing of the control
flow of the application. A failure raised by the PositionAndVelocity aspect may easily
impact the PowerOffAndBreak aspect affecting the electronic control unit in charge of
the safety.

Whereas most of current aspect languages offer sophisticated pointcut primitives to
express location of join points, they do not provide a means to limit the impact of an
aspect into a well-defined system area. In the up coming section we define a module
system for an aspect-oriented programming environment in which one or more aspect
compositions are effective only in the context of a well-defined subset of the base system.

4 Scoping Aspects with Aspectboxes

Most of today’s aspect languages do not provide a way to limit the impact of an aspect
within a delimited scope. In this section, we describe a module system for an aspect-
oriented programming language that allows for controlling the visibility of a set of
aspects relative to a well-defined system area.

4.1 Aspectboxes in a Nutshell

Aspectboxes is a namespace mechanism for aspects. An aspect lives in an aspectbox and
the effects of this aspect is limited to the aspectbox in which it is defined and to other
aspectboxes that rely on the base system extended by this aspect. An aspectbox can (i)
define classes, (ii) import classes from another aspectbox and (iii) define aspects.

The import relationship is transitive: If an aspectbox AB2 imports a class C from
another aspectbox AB1, then a third aspectbox AB3 can import C from AB2. From the
point of view of the importing aspectbox AB3, there is no difference if the class is
defined or imported in the provider aspectbox AB2. Because aspects cannot be reused
across multiple base systems, aspects cannot be imported.

A pointcut definition contained in an aspect refers only to classes that are imported (i.e.,
visible within the aspectbox that defines this aspect). An aspect in an aspectbox refines
the behavior of the classes that are imported or defined, for instance by adding some code
before and after some methods. The classes augmented with the aspect can also be im-
ported from another aspectbox. From the point of view of an importing aspectbox, there
is no distinction between classes defined within the aspectbox and those imported.

4.2 Namespace for Classes and Aspects

An aspectbox defines a namespace for class definitions, aspect definitions and aspect
compositions.

Aspectbox as Namespace for Classes. The class Engine contained in the aspectbox
DrivingControlAB1 as illustrated in Figure 1 is defined as the following2:

1 We end the name of aspectboxes by AB to clearly make a distinction between them and regular
class names.

2 Since our aspectboxes prototype is implemented in Squeak, we therefore use the Squeak syntax
to describe them.

78 A. Bergel et al.

(Aspectbox named: #DrivingControlAB)
createClassNamed: #Engine
instanceVariableNames: ”

The class Engine does not have any instance variables and two methods accelerate-
Wheels: anAcceleration and setAnglewithHeading: anAngle are defined on it.

DrivingControlAB.Engine>>
accelerateWheels: anAcceleration

”accelerate the wheels with a given acceleration”
...

DrivingControlAB.Engine>>
setAnglewithHeading: anAngle

”set the heading of the car by setting
appropriately the wheel angle”
...

An aspectbox acts as a code packaging mechanism and constrains aspect visibility.
A class is visible within an aspectbox if this class is defined in or imported to this as-
pectbox. Any class visible within an aspectbox AB1 can be imported from AB1 by other
aspectboxes. The aspectbox PositionControlAB imports the class Engine from Driving-
ControlAB

(Aspectbox named: #PositionControlAB)
import: #Engine from: #DrivingControlAB

An instantiation of a class can occurs in any aspectbox as long as this class is visi-
ble in the aspectbox that contains the code performing the instantiation. Class instances
(i.e., objects) do not belong to an aspectbox.

Aspectbox as Namespace for Aspect Definitions. The module position and velocity is
implemented by the PositionAndVelocity aspect:

(Aspectbox named: #PositionControlAB)
createAspectNamed: #PositionAndVelocity
instanceVariableNames: ’heading velocity’

Because the aspect PositionAndVelocity has to be applied to the class Engine, this
class has to be imported from the DrivingControlAB aspectbox. This aspect also defines
advices to be applied to the methods accelerateWheels: anAcceleration and setAngle-
withHeading: anAngle that compute the velocity and the heading, respectively, as illus-
trated in Figure 2.

Aspectbox as Namespace for Aspect Compositions. An aspect, which is defined in
an aspectbox, is applied to classes that are visible in this aspectbox (i.e., classes that are
imported or defined). The effect of this aspect is limited to the aspectbox in which this
aspect is defined. Outside this aspectbox, it is as if no aspect would have been applied
to the base system.

Aspectboxes: Controlling the Visibility of Aspects 79

PositionControlAB. PositionAndVelocity>> adviceComputeVelocity
ˆAfterAdvice

pointcut: (JoinPointDescriptor
targetClass: Engine targetSelector: #accelerateWheels:)

afterBlock: [:receiver :arguments :aspect |
”computation of the velocity according to the speed of the wheels”
velocity := ...]

PositionControlAB. PositionAndVelocity>> adviceComputeHeading
ˆAfterAdvice

pointcut: (JoinPointDescriptor
targetClass: Engine targetSelector: #setAnglewithHeading:)

afterBlock: [:receiver :arguments :aspect |
”computation of the heading according to the speed of the wheels”
heading := ...]

Fig. 2. The velocity and the heading are computed by two advices adviceComputeVelocity and
adviceComputeHeading, respectively

The aspectbox SafetyControlAB defines the aspect PowerOff. This aspect has one
advice, adviceDrivingControl that proceed a method call if the hasPower is true.

(Aspectbox named: #SafetyControlAB)
createAspectNamed: #PowerOff
instanceVariableNames: ’hasPower’.

SafetyControlAB.PowerOff>>
adviceDrivingControl

| joinpoints |
joinpoints := JointPointDescriptor

targetClasses: {Joystick . Engine . Wheels}.
ˆAroundAdvice

pointcut: joinpoints
aroundBlock: [:receiver :arguments :aspect |

hasPower ifTrue: [aspect proceed]

Aspects PowerOff and PositionAndVelocity described above have a common pointcut:
public method of the class Engine. Because these two aspects belongs to different as-
pectboxes (SafetyControlAB and PositionControlAB, respectively), they do not conflict
with each other.

4.3 Executing Code in an Aspectbox

Triggering a program execution in an aspectbox is achieved by the method eval:.

(Aspectbox named: #SafetyControlAB) eval: [
| app |
app := SafetyApplication new.
app run].

80 A. Bergel et al.

The code above instantiates the class SafetyApplication and invokes the method run.
The code invoked by this method run will benefit from aspects defined in SafetyContro-
lAB (i.e., PowerOff). Similarly, an application invoked in the aspectbox PositionContro-
lAB will benefit from PositionAndVelocity without being affected by SafetyControlAB.

4.4 Absolute Isolation of Aspects

It is widely accepted that encapsulating different functionalities of a system in distinct
modular units aids their comprehensibility and maintainability [15].

Figure 1 illustrates a modular architecture. Because it is closely linked to the physical
and external physical mechanic events, the driving control unit needs special care and
should not be altered by other units that are not necessary for its execution. Also, for
safety reasons, the position control unit has to be built on top of the motion engine
without affecting its execution. Different concerns composed into a system have to be
well modularized and isolated from the base system.

The aspectboxes module system has the following properties:

– Conflicts between aspects are avoided. By living in different scopes, aspects are
kept separated. Even if aspects defined in different aspectboxes have the same join
points, there is no need to define precedence rules for composition ordering.

– Minimal extension of the aspect language. Combining the aspectboxes module sys-
tem with AspectS [8] did not require any modification of the aspect language syn-
tax. Static references contained in the definition of pointcuts are resolved using the
classes visible in the aspectbox in which these pointcuts are defined in.

5 Implementation

A prototype of aspectboxes is implemented in Squeak. Figure 3 describes how the safety
control and the position control are hooked into the driving control module.

AspectS. AspectS [8] is an approach to general-purpose aspect-oriented programming
in the Squeak3 Smalltalk environment [9]. It extends the Squeak metaobject protocol
to accommodate the aspect modularity mechanism. In contrast to systems like AspectJ,
weaving and unweaving in AspectS happens dynamically at runtime, on-demand, em-
ploying metaobject composition. Instead of introducing new language constructs, As-
pectS utilizes Squeak itself as its pointcut language. AspectS benefits from the expres-
siveness and uniformity of Squeak.

Activation Blocks. AspectS uses Method Wrappers [4] to instrument both message
sends and receptions. Such wrappers support execution of additional code before, after,
around, or instead of an existing method. The core of the aspect activation mechanism
is implemented in the isActive method of the class MethodWrapper. All additional code
provided by a wrapper is to be activated only if all activation blocks associated with
it evaluate to true. Activation blocks are treated as predicate methods, returning either
true or false as the outcome of their execution.

3 Squeak is an open-source Smalltalk available from http://www.squeak.org

Aspectboxes: Controlling the Visibility of Aspects 81

Joystick Engine Wheels

Driving Control

PowerOff
Position
Velocity

Safety Control Position Control

Base system

Activation block

Aspect

Aspectbox

Pointcut

Fig. 3. The PowerOff. and PositionAndVelocity aspects hooked into the driving control module.

Aspectboxes. The aspectboxes module system is fully integrated in the Squeak environ-
ment. When an aspect is woven, activation blocks are created and placed at join points
shadows. When the control flow of the application reaches a join point, the isActive
methods is executed in order to determine if this potential join point is within the scope
of an aspectbox defining this aspect to yield activation or not (i.e., if it is associated with
the current control flow).

6 Related Work

AspectJ. The pointcut language offered by AspectJ provides a mechanism to restrict a
pointcut definition to a package or a class (i.e., within and withincode pointcut primi-
tives). The purpose of these constructs is to restrict the location of join points between a
base system and an aspect, however advices hooked at those join points remain globally
visible. Therefore, the restricting pointcut primitives of AspectJ do not help in scoping
an aspect application.

CaesarJ. Aspects, packages and classes are unified in CaesarJ [1] under a single notion,
a cclass. Aspect deployment can either be global or thread local.

Aspectboxes promotes a syntactic scoping of aspects: an aspect is scoped to the as-
pectbox that defines it. In CaesarJ, an aspect is scoped to the thread it was installed in.

Classboxes. The Classbox module system allows a class to be extended by means of
class member additions and redefinitions. These extensions are visible in a locally and
well-delimited scope. Several versions of a same class can coexist at the same time in
the same system. Each class version corresponds to a particular view of this class [3].

Classboxes and aspectboxes have a common root which is the scoping mechanism for
refinement. Whereas classboxes support structural refinement (i.e., class members addi-
tion and redefinition), aspectboxes offer a scoping mechanism for behavioral refinement.

Context-aware Aspects. Context awareness promotes software program behaviour to
depend on “context”. Context-aware aspects [17] offers language constructs to handle
contexts. A context is defined by the programmer as a plain standard object. The point-
cut language is extended with primitives such as inContext(c) and createdInContext(c)
that restrict a pointcut expression to a particular context c and to objects that were cre-
ated in a context c, respectively.

82 A. Bergel et al.

Whereas context-aware aspects trigger the activation of aspects based on some ar-
bitrary context activation function, aspectboxes promote the concurrent applications of
aspects by restricting them to different scope.

Context-oriented Programming. ContextL [6], a CLOS-based implementation for
Context-Oriented Programming, provides dedicated programming language constructs
to associate partial class and method definitions with layers. Layers activation and de-
activation is driven by the control flow of a running program. When a layer is activated,
the partial definitions become part of the program until this layer is deactivated.

Whereas scoping software system refinement is the common problem for context-
oriented programming and aspectboxes, the approaches are different. A layer in Con-
textL encapsulate structural definitions, whereas aspectboxes encapsulate behavioral
definitions.

AWED. Aspects with Explicit Distribution (AWED) [14] is an approach for defining
crosscutting behaviour on remote locations (i.e., distributed applications). AWED is
an aspect language supporting remote pointcuts, distributed advices and distributed as-
pects. A distributed aspect allows for state sharing and aspect instance to be distributed
across multiple hosts.

7 Conclusions

Aspectboxes provide a new aspect modularity construct limiting the scope of aspect com-
position with a base software system. Modifications to the base system are visible only in
the aspectbox the aspect is defined in. This allows one to deploy multiple concurrent mod-
ifications in the same base system, avoiding conflicting situations across aspectboxes.

In the work presented in this paper, an aspect cannot be imported from an aspectbox.
The reason for this is that aspects are not generic (i.e., cannot be applied to other base
systems). As future work, we plan to refine the notion of import to enable reuse of
aspects within multiple aspectboxes.

Our prototypical implementation is based on AspectS. It integrates the composition
mechanisms of AspectS and Classboxes to achieve the desired composition and scoping
behavior.

Acknowledgements

We gratefully acknowledge the financial support of the Science Foundation Ireland and
Lero — the Irish Software Engineering Research Centre. We also like to thank Parinaz
Davari and Daniel Rostrup for their valuable comments.

References

1. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of caesarj. Transactions on
Aspect-Oriented Software Development 3880, 135–173 (2006)

2. Baille, G., Garnier, P., Mathieu, H., Pissard-Gibollet, R.: Le cycab de l’inria rhône-alpes.
Technical Report RT-0229, INRIA (1999)

Aspectboxes: Controlling the Visibility of Aspects 83

3. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the scope of change in Java.
In: Proceedings of Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2005), pp. 177–189. ACM Press, New York (2005)

4. Brant, J., Foote, B., Johnson, R., Roberts, D.: Wrappers to the Rescue. In: Jul, E. (ed.)
ECOOP 1998. LNCS, vol. 1445, pp. 396–417. Springer, Heidelberg (1998)

5. Brichau, J., Mens, K., Volder, K.D.: Building Composable Aspect-Specific Languages with
Logic Metaprogramming. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS,
vol. 2487. Springer, Heidelberg (2002)

6. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented programming. In: Pro-
ceedings of the Dynamic Languages Symposium 2005 (2005)

7. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of stateful
aspects. In: AOSD 2004: Proceedings of the 3rd international conference on Aspect-oriented
software development, pp. 141–150. ACM Press, New York (2004)

8. Hirschfeld, R.: AspectJ(tm): Aspect-Oriented Programming in Java. In: Aksit, M., Mezini,
M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 1–1. Springer, Heidelberg (2003)

9. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The story of
Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA 1997, ACM SIG-
PLAN Notices, pp. 318–326. ACM Press, New York (1997)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer,
Heidelberg (2001)

11. Klaeren, H., Pulvermüller, E., Raschid, A., Speck, A.: Aspect Composition Applying the De-
sign by Contract Principle. In: Butler, G., Jarzabek, S. (eds.) GCSE 2000. LNCS, vol. 2177,
pp. 57–69. Springer, Heidelberg (2001)

12. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect composition.
In: PEPM 2006: Proceedings of the 2006 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pp. 68–77. ACM Press, New York (2006)

13. Nagy, I., Bergmans, L., Aksit, M.: Composing aspects at shared join points. In: Hirschfeld,
R., Ryszard Kowalczyk, A.P., Weske, M. (eds.) Proceedings of International Conference
NetObjectDays, NODe2005, Erfurt, Germany. Lecture Notes in Informatics, vol. P-69,
Gesellschaft für Informatik (GI) (2005)

14. Navarro, L.D.B., Südholt, M., Vanderperren, W., Fraine, B.D., Suvée, D.: Explicitly dis-
tributed AOP using AWED. In: Proceedings of the 5th Int. ACM Conf. on Aspect-Oriented
Software Development (AOSD 2006), ACM Press, New York (2006)

15. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. CACM 15(12),
1053–1058 (1972)

16. Tanter, É.: Aspects of Composition in the Reflex AOP Kernel. In: Löwe, W., Südholt, M.
(eds.) SC 2006. LNCS, vol. 4089, pp. 99–114. Springer, Heidelberg (2006)

17. Tanter, É., Gybels, K., Denker, M., Bergel, A.: Context-aware aspects. In: Löwe, W., Südholt,
M. (eds.) SC 2006. LNCS, vol. 4089, pp. 229–244. Springer, Heidelberg (2006)

On State Classes and Their Dynamic Semantics

Ferruccio Damiani1, Elena Giachino1, Paola Giannini2, and Emanuele Cazzola2

1 Dipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, 10149 Torino, Italy

{damiani,giachino}@di.unito.it
2 Dipartimento di Informatica, Università del Piemonte Orientale

Via Bellini 25/G, 15100 Alessandria, Italy
giannini@mfn.unipm.it

Abstract. We introduce state classes, a construct to program objects that can
be safely concurrently accessed. State classes model the notion of object’s state
(intended as some abstraction over the value of fields) that plays a key role in con-
current object-oriented programming (as the state of an object changes, so does
its coordination behavior). We show how state classes can be added to Java-like
languages by presenting STATEJ, an extension of JAVA with state classes. The
operational semantics of the state class construct is illustrated both at an abstract
level, by means of a core calculus for STATEJ, and at a concrete level, by defining
a translation from STATEJ into JAVA.

Keywords: Java, concurrent object-oriented language, small-step semantics, core
calculus, implementation by translation.

1 Introduction

The notion of object’s state, intended as some abstraction on the values of fields, plays
a key role in concurrent object-oriented programming. Various language constructs for
expressing object’s state abstractions have been proposed in the literature (see, e.g., [1]
for a survey). We propose state classes, a programming feature that could be added
to JAVA-like programming languages. The main novelties in our proposal are: (1) The
ability of states to carry values, thanks to the fact that states may be parameterized by
special fields, that we call attributes; and (2) The presence of a static type and effect
system guaranteeing that, even though the state of the objects may vary through states
with different attributes, no attempt will be made to access non-existing attributes (this
is, for state attributes, the standard requirement that well typed programs cannot cause
a field not found error).

This paper focuses on the dynamic semantics of state classes. Typing issues are ad-
dressed in [2]. The paper is organized as follows: Section 2 introduces STATEJ, an ex-
tension of JAVA with state classes, through an example. Section 3 gives the FSJ calculus
(a core calculus for STATEJ). Section 4 outlines how STATEJ can be implemented by
translation into plain JAVA. Sections 5 and 6 conclude by discussing related and further
work, respectively.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 84–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On State Classes and Their Dynamic Semantics 85

public state class ReaderWriter {
state FREE {
public void shared() {this!!SHARED(1);}
public void exclusive() {this!!EXCLUSIVE;}

}
state SHARED(int n) {
public void shared() {n++;}
public void releaseShared()
{n--; if (n==0) this!!FREE;}

}
state EXCLUSIVE {
public void releaseExclusive()
{this!!FREE;}

}
}

Fig. 1. A multiple-reader, single-writer lock

2 An Example

In this section we motivate STATEJ through an example. The state class construct is
designed to program objects that can be safely concurrently accessed. Therefore, in a
state class, all the fields are private and all the methods are synchronized (that is, they
are executed in mutual exclusion on the receiver object). A state class may extend an
ordinary (i.e., non-state) class, but only state classes may extend state classes. Each state
class specifies a collection of states. Each state is parameterized by some special fields,
called attributes, and declares some methods. The state of an object o can be changed
only inside methods of o, by means of a state transition statement, this!!S(e1, . . . , en),
where “S” is the name of the target state and “e1, . . . , en” (n ≥ 0) supply the values
for all the attributes of S. An object belonging to a state class is always in one of the
states specified in its class. Each state class constructor must set the state of the created
object. The default constructor of the root of a hierarchy of state classes sets the state to
the first state defined in the class.

The class ReaderWriter (in Fig. 1) implements a multiple reader, single-writer lock
— see [3], for an implementation using traditional concurrency primitives in a dialect
of MODULA 2, and [4], for an implementation using chords in POLYPHONIC C�.

When a thread e invokes a method m on an object o belonging to a state class (e.g.,
to the class ReaderWriter in Fig. 1), if either o is in a state that does not support
the invoked method (e.g., shared invoked on an EXCLUSIVE ReaderWriter) or some
other thread is executing a method on o, then the execution of e is blocked until o
reaches (because of the action of some other thread) a state where the invoked method
is available and no other thread is executing a method on o.

The policy implemented by the ReaderWriter class above is prone to writers’ star-
vation. The class ReaderWriterFair (in Fig. 2) extends the class ReaderWriter to
implement a writer starvation free policy.

An extending class inherits all the states of the extended class, and may add/override
methods and introduce new states. Thus, class ReaderWriteFair has states FREE,

86 F. Damiani et al.

public state class ReaderWriterFair
extends ReaderWriter {

state SHARED(int n) {
public void exclusive()
{this!!PENDING_WRITER(n);
pre_exclusive();
this!!EXCLUSIVE;}

}
state PENDING_WRITER(int n) {
public void releaseShared()
{n--; if (n==0) this!!PRE_EXCLUSIVE;}

}
state PRE_EXCLUSIVE {
private void pre_exclusive() { }

}
}

Fig. 2. A fair multiple-reader, single-writer lock

SHARED, EXCLUSIVE, PENDING WRITER and PRE EXCLUSIVE. When the request ex−
clusive is received by an object o in state SHARED(n), then the state of o is set to
PENDING WRITER(n) and the method body suspends; in this state o can only execute
up to n requests of releaseShared; after the n-th such request, the state of o is set to
PRE EXCLUSIVE; in state PRE EXCLUSIVE the method body for exclusive can con-
tinue, and will set the state of o to EXCLUSIVE.

The ReaderWriterFair class illustrates a common pattern in state class program-
ming: the private method pre exclusive has an empty body, and acts as a test that the
receiver has reached the state PRE EXCLUSIVE.

3 A Calculus for STATEJ

This section gives syntax and operational semantics of FSJ, a minimal imperative core
calculus for STATEJ. FSJ models the innovative features of the state construct (namely
state classes, state attributes and methods, and state transitions) and multi-threaded
computations.

A FSJ program consists of a set of class definitions plus an expression to be evalu-
ated, that we will call the main expression of the program.

3.1 Syntax

The abstract syntax of FSJ class declarations (L), class constructor declarations (K),
state declarations (N), method declarations (M), and expressions (e) is given in Fig. 3.
The metavariables A, B, C, and D range over class names; S ranges over state names; f
and g range over attribute names; m ranges over method names; x ranges over method
parameter names; and a, b, c, d, and e range over expressions.

We write “ē” as a shorthand for a possibly empty sequence “e1, · · · , en” (and sim-
ilarly for C, f, S, x) and write “N̄” as a shorthand for “N1 · · · Nn” with no commas (and

On State Classes and Their Dynamic Semantics 87

Syntax: L ::= state class C extends C {K N̄}
K ::= C(C̄ f̄){this!!S(f̄)}
N ::= state S (C̄ f̄){M̄}
M ::= C m (C̄ x̄) {e}
e ::= x | this | this.f | e; e | new C(ē)

| this!!S(ē) | spawn(e) | e.m(ē)

Subtyping:
C <: C

C1 <: C2 C2 <: C3
C1 <: C3

state class C1 extends C2 · · · {· · · }
C1 <: C2

State attributes lookup: state class C · · · {· · · state S(C̄ f̄){· · · } · · · }
attributes(C, S) = C̄ f̄

state class C extends D {K N̄} S �∈ N̄
attributes(C, S) = attributes(D, S)

Method definition lookup: state class C · · · {K N̄} state S{M̄} ∈ N̄
A m(Ā x̄) {e} ∈ M̄

mDef (m, C, S) = A m(Ā x̄) {e}
state class C extends D {K N̄}
(S �∈ N̄ or (state S{M̄} ∈ N̄ and m �∈ M̄))

mDef (m, C, S) = mDef (m, D, S)

Fig. 3. FSJ syntax, subtyping rules, and lookup functions

similarly for M̄). We write the empty sequence as “•” and denote the concatenation of
sequences using either comma or juxtaposition, as appropriate. We abbreviate opera-
tions on pair of sequences by writing “C̄ f̄” for “C1 f1, . . . , Cn fn”, where n is the
length of C̄ and f̄. We assume that sequences of state declarations or names, attribute
declarations or names, method parameter declarations or names, method declarations
do not contain duplicate names.

The class declaration

state class C extends D {K N̄}

defines a state class of name C with superclass D. The new class has a single constructor
K and a set of states N̄. The state declarations N̄ may either refine (by adding/overrinding
methods) states that are already present in D or add new states.

The constructor declaration C(C̄ f̄) {this!!S(f̄)} specifies how to initialize the state
and the state attributes of an instance of C. It takes exactly as many parameters as there
are attributes of the state S and its body consists of a state transition statement.

The state declaration state S(C̄ f̄) {M̄} introduces a state with name S and attributes
of names f̄ and types C̄. The declaration provides a suite of methods M̄ that are available
in the state S of the class C containing the state declaration. A state S declared in a class
C inherits all the (not overridden) methods that are defined in the (possible) declarations
of S contained in the superclasses of C.

The method declaration C m (C̄ x̄) {e} introduces a method named m with result type
C, parameters x̄ of types C̄, and body e. The variables x̄ and the pseudo-variable this
are bound in e.

The class declarations in a program must satisfy the following conditions: (1) Object
is a distinguished class name whose declaration does not appear in the program; (2) For
every class name C (except Object) appearing anywhere in the program, one and only

88 F. Damiani et al.

one class with name C is declared in the program; and (3) The subtype relation induced
by the class declarations in the program (denoted by <: and formally defined in the
middle of Fig. 3) is acyclic. To simplify the notation in what follows (as in [5]), we
always assume a fixed program.

The lookup functions are given at the bottom of Fig. 3. We write S �∈ N̄ to mean that
no declaration of the state S is included in N̄, and m �∈ M̄ to mean that no declaration of
the method m is included in M̄. Lookup of the attributes of a state S of a class C, written
attributes(C, S), returns a sequence C̄ f̄ pairing the type of each attribute declared in
the state with its name. Lookup of the definition of the method m in the state S of a state
class C is denoted by mDef (m, C, S).1 Note that attributes(C, S) and mDef (m, C, S) are
undefined when C = Object.2

3.2 Operational Semantics

In this section we introduce the operational semantics of FSJ, by defining the reduction
rules that transform configurations representing multi-threaded computation. A config-
uration is a pair “ē, H”, where ē is a sequence of n ≥ 1 runtime expressions and H
is a heap mapping addresses to objects. Addresses, ranged over by the metavariable ι,
are the elements of the denumerable set I. Objects are finite mappings associating: (1)
the distinguished name “class” to a class name indicating the class of the object; (2)
the distinguished name “state” to a state name indicating the state of the object; and
(3) a mapping associating a finite number (possibly zero) of state attribute names to
addresses. Objects will be denoted by [[class : C, state : S, f̄ : ῑ]].

The first component of a configuration, ē, will be called “sequence of threads”. A
thread of computation is represented by the evaluation of a runtime expression ei in the
heap H. The different threads share the same heap H. Threads do not have, as in full
STATEJ and JAVA, an associated stack, keeping the association between parameters and
values. In fact, since FSJ does not include assignment, method calls are evaluated by
directly substituting the formal parameters and the metavariable this with the corre-
sponding values (in FSJ the only values are addresses). We call the result of this substi-
tution, which is no longer an expression of the source language, a simple runtime expres-
sion. Simple runtime expressions, ranged over by s, are obtained from the pseudo gram-
mar defining expressions (in Fig. 3) by replacing the clauses “x | this | this.f |”
with the clauses “ι | ι.f |” (see the top of Fig. 4).

Runtime expressions, ranged over by e, are defined by the grammar at top of Fig. 4.
In FSJ every method is synchronized, therefore on method call the lock of the object re-
ceiving the call must be acquired, unless the call is inside a method of the object itself, in
which case the call can proceed (the lock is reentrant). Moreover, when the method call
is on a method not defined in the current state, the lock of the object must be released.
This gives to other threads a chance to change the state of the object to a state in which
the method is defined. Both these situations are modelled by particular runtime expres-
sions: (1) ret(ι, m, e), where e does not contain occurrences of unlock(ι. · · · (· · ·)),

1 In full STATEJ, like in JAVA, the lookup functions take into account method overloading, that
(for simplicity) is not included in FSJ.

2 In full STATEJ the class Object has several methods.

On State Classes and Their Dynamic Semantics 89

Simple runtime expressions, runtime expressions, evaluation contexts, redexes, and auxiliary functions:

s ::= ι | ι.f | s; s | new C(s̄) | ι!!S(s̄) | spawn(s) | s.m(s̄)
e ::= ι | ι.f | e; s | new C(ῑ, ė, s̄) | ι!!S(ῑ, ė, s̄) | spawn(e) | e.m(s̄) | ι.m(ῑ, ė, s̄)

| ret(ι, m, e) | unlock(ι.m(ῑ))
E ::= [] | E; s | new C(ῑ, E, s̄) | ι!!S(ῑ, E, s̄) | spawn(E) | E.m(s̄) | ι.m(ῑ, E, s̄) | ret(ι, m, E)
r ::= ι.f | ι; s | new C(ῑ) | ι!!S(ῑ) | spawn(ι) | ι.m(ῑ) | ret(ι, m, ι) | unlock(ι.m(ῑ))

lockedBy(e) = {ι | ret(ι, · · · , · · ·) is a subexpression of e and unlock(ι. · · · (· · ·)) is not a subexpression of e}
lockedBy(e1 · · · en) =

⋃
1≤i≤n lockedBy(ei)

Reduction rules:

H(ι) = o o(f) = ι′

ā E[ι.f] c̄, H −→ ā E[ι′] c̄, H
(R-ATTR)

ā E[ι; s] c̄, H −→ ā E[s] c̄, H (R-SEQ)

state class C · · · {C(̄C f̄){this!!S(̄f)} · · · } o = [[class : C, state : S, f̄ : ῑ]] ι �∈ Dom(H)
ā E[new C(ῑ)] c̄, H −→ ā E[ι] c̄, H[ι : o]

(R-NEW)

H(ι)(class) = C attributes(C, S) = C̄ f̄ o = [[class : C, state : S, f̄ : ῑ]]
ā E[ι!!S(ῑ)] c̄, H −→ ā E[ι] c̄, H[ι : o]

(R-TRANS)

ā E[spawn(ι)] c̄, H −→ ā E[ι] c̄ ι.run(), H (R-SPAWN)

ι �∈ lockedBy(āc̄) H(ι) = [[class : D, state : S, · · ·]] mDef (m, D, S) = C m (̄C x̄) {e}

ā E[ι.m(ῑ)] c̄, H −→ ā E[ret(ι, m, e[this := ι, x̄ := ῑ])] c̄, H
(R-INVK-1)

ι ∈ lockedBy(E[ι.m(ῑ)]) H(ι) = [[class : D, state : S, · · ·]] mDef (m, D, S) undefined
ā E[ι.m(ῑ)] c̄, H −→ ā E[unlock(ι.m(ῑ))] c̄, H

(R-INVK-2)

ι �∈ lockedBy(āc̄) H(ι) = [[class : D, state : S, · · ·]] mDef (m, D, S) = C m (̄C x̄) {e}

ā E[unlock(ι.m(ῑ))] c̄, H −→ ā E[ret(ι, m, e[this := ι, x̄ := ῑ])] c̄, H
(R-UNLOCK)

ā E[ret(ι, m, ι0)] c̄, H −→ ā E[ι0] c̄, H (R-RET)

Fig. 4. FSJ (simple) runtime expressions, evaluation contexts, redexes, auxiliary functions, and
reduction rules.

specifies that a thread is currently holding the lock of the receiver ι, in order to evaluate
the expression e, which represents the body of the method m, and (2) unlock(ι.m(ῑ))
specifies that the lock of ι has been released in order to give a chance to another thread
to change the state of ι to a state in which m is defined. Note that, the definition of the
syntax for runtime expressions implies that there can be nested ret expressions but
only one unlock. The metavariables a, b, c, d, and e range over runtime expressions.
We write ā as a shorthand for a possibly empty sequence a1 · · ·an and ȧ as a shorthand
for a possibly empty sequence of length almost one. The function lockedBy(ē), defined
in Fig. 4, returns the set of addresses that are locked by the thread sequence ē.

The reduction relation has the form “ā b1 c̄, H1 −→ ā b2 c̄ ḋ, H2”, read “configura-
tion ā b1 c̄, H1 reduces to configuration ā b2 c̄ ḋ, H2 in one step”. The (empty or single-
ton) sequence ḋ indicates that a new thread might have been spawned because of the
reduction of a spawn expression. We write −→� for the reflexive and transitive closure
of −→.

By using the definition of evaluation context and redex (see E and r in Fig. 4), the
reduction rules ensure that inside each thread the computation follows a call-by-value
left-to-right reduction strategy. This implies that expressions such as ret and unlock
can only be preceded by values and followed by simple runtime expressions, which do
not contain ret and unlock (see the definition of s and e in Fig. 4).

The following property asserts that a context can be decomposed in a unique way in
sub-contexts showing the activation stack of method calls.

90 F. Damiani et al.

Property 1 (Unique Decomposition). Every evaluation context E can be written as

E1,1[ret(ι1, m1,1, · · · E1,q1 [ret(ι1, m1,q1︸ ︷︷ ︸
q1

· · ·

Ep,1[ret(ιp, mp,1, · · · Ep,qp [ret(ιp, mp,qp︸ ︷︷ ︸
qp

, E0)] · · ·)]

· · ·)] · · ·)],

where E1,1, . . ., E1,q1 , . . ., Ep,1, . . ., Ep,qp (p ≥ 0, q1 ≥ 1, . . ., qp ≥ 1) and E0 do not
contain ret(· · ·) subexpressions.

The reduction rules are given at the bottom of Fig. 4. Each reduction rule rewrites a
configuration of the form “āE [r] c̄, H1”, where E is an evaluation context and r is a
redex, into a configuration of the form “āE [e] c̄ ḋ, H2”. The metavariable o ranges over
objects. We use H[ι : o] to denote the heap such that H[ι : o](ι) = o and H[ι : o](ι′) =
H(ι′), for ι′ �= ι.

The reduction rules for attribute selection, (R-ATTR), and sequential composition,
(R-SEQ), are standard. The rule for object creation, (R-NEW), stores the newly created
object at a fresh address of the heap and returns the address. The pseudo fields class
and state, and the parameters of the initial state are initialized as specified by the class
constructor. The rule for state transition, (R-TRANS), changes the current state of the
object and returns its address. Rule (R-SPAWN) replaces the spawn expression with the
address ι and adds a new thread evaluating the call of the method run on the object
at ι. Rule (R-INVK-1) is applied if the method m is defined in the current state of the
receiver, ι, and no other thread holds the lock of ι. The expression produced replaces
the call with ret(ι, m, e′), indicating that the current thread holds the lock of ι. The
expression e′ is the body of the method m in which this and the formal parameters are
replaced with the address ι and the actual parameters. Rule (R-INVK-2) is applied if
the method m is not defined in the current state of the receiver and the current thread
holds the lock of ι. In this case, the lock of ι must be released and the thread must
wait that some other thread changes the state of ι to a state in which m is defined. This
is achieved by replacing the method call redex with the expression unlock(ι.m(ῑ)).
Note that, since the current thread had the lock of ι, the newly introduced unlock
expression is a subexpression of an expression ret(ι, m′, e′) for some m′ and e′. Rule
(R-UNLOCK) replaces the expression unlock(ι.m(ῑ)), if ι is not locked and the method
m is defined in its state, with ret(ι, m, e′), where e′ is the body of the method m in
which this and the formal parameters are replaced with the address ι and the actual
parameters. Rule(R-RET), that applies when the body of the method m on object ι has
been evaluated completely, producing a value, releases the lock of ι by removing the
ret(ι, m, ι0) subexpression.

Example 1 (Application of the reduction rules). First we define the following classes CR
and CW representing the class of threads that have a shared access to a ReaderWriter
object rw and the class of threads that have an exclusive access to it, respectively.

state class CR extends Object {
CR(ReaderWriter rw) { this!!S(rw) }

On State Classes and Their Dynamic Semantics 91

state S (ReaderWriter rw) {
Object run () {

rw.shared();
...
rw.releaseShared();
this.run() } }

}

state class CW extends Object {
CW(ReaderWriter rw) { this!!S(rw) }
state S (ReaderWriter rw) {
Object run () {

rw.exclusive();
...
rw.releaseExclusive();
this.run() } }

}

We consider as the main expression of the program, that is the expression to be
evaluated,

spawn(newCR(ι)); (newCW(ι)).run(),

where ι is a ReaderWriter object, so the computation starts from the following con-
figuration:

spawn(newCR(ι)); (newCW(ι)).run(), H

where H = ι : [[class : ReaderWriterFair, state : FREE]].
A possible computation is as in Fig. 5, where SH stands for SHARED, PW stands for

PENDING WRITER, EX stands for EXCLUSIVE, and PE stands for PRE EXCLUSIVE. We
adopt the following notations: (1) Threads e1, e2 being part of the configuration are

written

(
e1

e2

)
; (2) Redexes are underlined; (3) Redexes of suspended threads are under-

lined and written in grey; (4) the arrow =⇒ indicates one step of reduction for each
thread of the sequence; (5) In ret expressions we omit method names. As we see in
Fig. 5, in the example we assumed to have integers, decrement and if-statement. These
are assumed, in line (#), to be reduced following the standard semantics.

4 From STATEJ to JAVA

This section briefly illustrates a translation from STATEJ to plain JAVA. The basic idea
of the translation is to map a state class into a JAVA class using synchronizedmethods
and the primitives wait() and notify(). A class contains a field indicating the current
state of the object, and methods corresponding to the methods of the original STATEJ
class. The translation can be briefly described as follows.

Method. Methods defined in more than one state have more than one body. To be able to
execute different bodies in different states our translation creates a unique synchroni−
zed method containing all the different bodies. At run-time, when the method is called,

92 F. Damiani et al.

spawn(new CR(ι)); (new CW(ι)).run(), H −→ spawn(ι′); (new CW(ι)).run(), H1 −→ first by (R-NEW) and second by (R-SPAWN)(
ι′; (new CW(ι)).run()
ι′.run()

)
, H1 =⇒ by (R-SEQ) and (R-INVK-1)

(
(new CW(ι)).run()
ret(ι′, ι.shared(); ...; ι.releaseShared(); ι′.run())

)
, H1 =⇒ by (R-NEW) and (R-INVK-1)

(
ι′′.run()
ret(ι′, ret(ι, ι!!SH(1)); ...; ι.releaseShared(); ι′.run())

)
, H2 =⇒ by (R-INVK-1) and (R-TRANS)

(
ret(ι′′, ι.exclusive();...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ret(ι, ι); ...; ι.releaseShared(); ι′.run())

)
, H3 −→ by (R-RET)

(
ret(ι′′, ι.exclusive(); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι; ...; ι.releaseShared(); ι′.run())

)
, H3 −→� by first applying (R-INVK-1) and (R-SEQ)

(
ret(ι′′, ret(ι, ι!!PW(1); ι.pre exclusive(); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι.releaseShared(); ι′.run())

)
, H3 −→ by (R-TRANS)

(
ret(ι′′, ret(ι, ι; ι.pre exclusive(); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι.releaseShared(); ι′.run())

)
, H4 −→ by (R-SEQ)

(
ret(ι′′, ret(ι, ι.pre exclusive(); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι.releaseShared(); ι′.run())

)
, H4 −→ by (R-INVK-2)

(
ret(ι′′, ret(ι, unlock(ι.pre exclusive()); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι.releaseShared(); ι′.run())

)
, H4 −→ by (R-INVK-1)

(#)

(
ret(ι′′, ret(ι, unlock(ι.pre exclusive()); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ret(ι, n − −; if (n = 0) ι!!PE); ι′.run())

)
, H4 −→�

(
ret(ι′′, ret(ι, unlock(ι.pre exclusive()); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι; ι′.run())

)
, H5 =⇒ by (R-UNLOCK) and (R-SEQ)

(
ret(ι′′, ret(ι, ret(ι,); ι!!EX); ...; ι.releaseExclusive(); ι′′.run())
ret(ι′, ι′.run())

)
, H5 −→� by (R-RET) and (R-INVK-1)

(
ret(ι′′, ret(ι, ι.releaseExclusive(); ι′′.run()))
ret(ι′, ret(ι′, ...))

)
, H6 −→� · · ·

where
H = ι : [[class : ReaderWriterFair, state : FREE]]
H1 = H[ι′ : [[class : CR, state : S, rw : ι]]] H2 = H1[ι

′′ : [[class : CW, state : S, rw : ι]]]
H3 = H2[ι : [[class : ReaderWriterFair, state : SH, n : 1]]] H4 = H3[ι : [[class : ReaderWriterFair, state : PW, n : 1]]]
H5 = H4[ι : [[class : ReaderWriterFair, state : PE]]] H6 = H5[ι : [[class : ReaderWriterFair, state : EX]]]

Fig. 5. An example of reduction

we have to check the current state of the object, and see whether the method was de-
fined in this state or not. In case it is defined, then the corresponding body is executed,
otherwise the thread calls a wait() putting it in hold. To keep the information on the
methods defined in a certain state we use a hash table. Due to the limitation of the
switch statement of JAVA, states are codified by the primitive type int. For example the
following class

state class Ex extends Object {
Ex() { this!!A(); }
state A () {
Object m() { /* body of m in A */ } }

state B () {
Object m() { /* body of m in B */ } } }

is translated into

class Ex extends Object {
Ex() { ... }
final static int A = 1;
final static int B = 2;
Hashtable stateMethods;
int currentState;

On State Classes and Their Dynamic Semantics 93

synchronized Object m() {
while (!existsInCurrentState) wait();
switch (currentState) {

case A : /* body of m in A */ break;
case B : /* body of m in B */ break;

} } }

where the existence of a method in a given state and its selection are done using the
hash table of methods.

State Transition. The state transition expression this!!A() is translated into

currentState = A; notifyAll();

so in addition to change the state of the objects it notifies all the threads waiting for
the lock of the current object. When the current thread will release the lock the notified
threads will compete to get it to have a chance to see whether the method that caused
the waiting is defined in the current state. If the method is defined, then the thread
can proceed, otherwise it calls a wait(). Due to the non deterministic nature of JAVA

scheduling we cannot insure the order in which notified threads will be waken up.

Constructor. The constructor of the translated class should initialize the hash table and
then include the translation of the constructor of the original class.

Inheritance. A state class may extend another class (either state or not). In the subclass
we inherit all the states and may add others. Therefore, we have to be careful to clashes
of constants of state. Moreover, methods may be added/redefined. For instance method
exclusive() of the example in Sect. 2, is defined in state FREE of ReaderWriter, and
redefined in state SHARED of ReaderWriterFair. When a method is redefined in its
translation we use the default clause as follows.

class ReaderWriterFairF
extends ReaderWriter {

...
synchronized void exclusive () {
while (!existsInCurrentState) wait();
switch (currentState) {
case SHARED:

currentState =PENDING_WRITER;
notifyAll();
pre_exclusive();
currentState =EXCLUSIVE;
notifyAll();
break;

default :
super.exclusive;
break; } } }

The current implementation of the translator (www.di.unito.it/˜giannini/stateJimpl/)
takes as input a program written in JAVA 1.4 extended with state classes with attribute-
free states (attributes can be straightforwardly codified by class fields; however, their

94 F. Damiani et al.

implementation would require to implement the type and effect analysis). The transla-
tion uses the tool for Language Recognition ANTLR, see [6], and the StringTemplate
tecnology, see [7]. We first made a JAVA 1.4 to JAVA 1.4 translation taking advantage
of the grammar defined by Parr and then modified the grammar to include our state
related constructs. The use of ANTLR and StringTemplate makes the translator easily
adaptable to different translation schemes and also to addition to the input language.

5 Related Work

According to [1] states provide a boundary coordination mechanism (we refer to
Sect. 4.2 of [1] for a survey of several COOLs with boundary coordination). In par-
ticular, the state class construct is related to the actor model [8] and to the behaviour
abstraction and behaviour/enable sets proposals [9,10].

At the best of our knowledge, the main novelties in our proposal are: the ability
of states to carry values (thanks to the presence of attributes); the formalization of an
abstract operational semantics of a notion of state for expressing coordination in JAVA-
like languages; and the presence of a static type and effect system (presented in [2])
guaranteeing that during the execution there cannot be any access to undefined attributes
of objects. Type systems for concurrent objects have been investigated in the literature,
see, e.g., “regular object types” [11], the TYCO object calculus [12], and the FickleMT

proposal [13].
Various improvements of the concurrency model of JAVA-like languages have been

proposed. In JOIN JAVA [14] and POLYPHONIC C� [4] the synchronization mechanism
relies on the join pattern, called chord in POLYPHONIC C�, construct. Chords can be
used to codify the state of an object through the pattern (illustrated, for instance, in [4])
of using private asynchronous method to carry object state. However, this pattern could
be misused leading to deadlock or errors. In STATEJ the notion of object state is in the
language definition, thus eliminating the possibility of many of such errors. In JEEG [15]
the synchronization conditions on an object o are expressed with linear temporal logic
constraints involving the value of fields and the method invocation history of o. These
constraints could be used to codify the state of an object o. However, state attributes
have to be mapped on object fields and there is no way to express the fact that some
fields should be accessible only in some states.

STATEJ (as JOIN JAVA, POLYPHONIC C�, and JEEG) focuses on a specific coordi-
nation mechanishm. The JR programming language [16] takes a different approach: it
extends JAVA providing a rich concurrency model with a variety of mechanisms. None
of this mechanisms directly models the notion of object state.

6 Future Work

The current prototypical implementation of STATEJ (www.di.unito.it/˜giannini/stateJimpl/) is
based on the translation scheme outlined in Sect. 4. It consists of a preprocessor that
maps code written in JAVA 1.4 extended with state classes into plain JAVA. The current
approach favors simplicity over efficiency. Its major drawback is that each state transi-
tion of an object o notifies all the threads waiting for any state of o. Note that, notifying

On State Classes and Their Dynamic Semantics 95

just the threads waiting for the target state of the transition would not represent a sig-
nificative improvement, since multiple state transitions may occur before the lock on o
is released. A more significative improvement would be moving notification from state
transition on o to lock release on o: this would allow notifying just the threads waiting
for the current state of o. Note that, however, all but the first (according to the scheduling
mechanism of JAVA) of such threads have to sleep again. We are currently investigating
a quite different approach that support selective wakeups. It can be roughly described
as follows:

– Each object o is equipped with a set of FIFO queues (one for each state).
– Whenever a thread invokes a method m on o, IF o is locked by some other thread

OR m is not available in the current state of o
• THEN the thread is suspended and enqueued in all the queues associated to the
states of o where m is available, and the lock on o (if held by the suspended
thread) is released

• ELSE the method executed and the lock on o (if not already held by the invok-
ing thread) is taken.

– Whenever the lock on o is released, IF the queue associated to the current state of
o is not empty, THEN a thread e is extracted from the queue, removed from all the
other queues, resumed, and it takes the lock on o.

Other future work includes: Refinement of the type and effect system given in [2]; Fur-
ther investigations on the expressivity of the state class construct and on its integration
in JAVA-like languages (by analyzing the interaction of state classes and their types with
the advanced features of JAVA-like languages); Development of a new prototype (based
on the translation scheme outlined above) including state attributes and the related type
and effect analysis; and Development of benchmarks.

References

1. Philippsen, M.: A Survey of Concurrent Object-Oriented Languages. Concurrency Compu-
tat.: Pract. Exper. 12, 917–980 (2000)

2. Damiani, F., Giachino, E., Giannini, P., Cameron, N., Drossopoulou, S.: A state abstraction
for coordination in java-like languages. In: Electronic proceedings of FTfJP 2006 (2006),
www.cs.ru.nl/ftfjp/

3. Birrel, A.D.: An introduction to programming with threads. Technical Report 35, DEC SRC
(1989)

4. Benton, N., Cardelli, L., Fournet, C.: Modern Concurrency Abstractions for C�. ACM
TOPLAS 26, 769–804 (2004)

5. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. ACM TOPLAS 23, 396–450 (2001)

6. Parr, T.: project group: ANTLR Reference Manual, Version 2.7.5 (2005),
http://www.antlr.org/doc/index.html

7. Parr, T.: StringTemplate Documentation, (2003-2005),
http://www.stringtemplate.org/doc/doc.html

8. Agha, G.A.: ACTORS: A Model of Concurrency Computation in Distribuited Systems. MIT
Press, Cambridge (1986)

www.cs.ru.nl/ftfjp/
http://www.antlr.org/doc/index.html
http://www.stringtemplate.org/doc/doc.html

96 F. Damiani et al.

9. Kafura, D.G., Lavender, R.G.: Concurrent object-oriented languages and the inheritance
anomaly. In: Casavant, T., Tvrdil, P., Plásil, F. (eds.) Parallel Computers: Theory and Prac-
tice, pp. 221–264. IEEE Press, Los Alamitos (1996)

10. Tomlinson, C., Singh, V.: Inheritance and synchronization with enabled-sets. In: OOPSLA
1989, pp. 103–112. ACM Press, New York (1989)

11. Nierstrasz, O.: Regular Types for Active Objects. In: OOPSLA 1993. ACM SIGPLAN No-
tices, vol. 28, pp. 1–15 (1993)

12. Ravara, A., Vasconcelos, V.T.: Typing Non-uniform Concurrent Objects. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 474–488. Springer, Heidelberg (2000)

13. Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: On re-classification and multithreading.
JOT, 3, 5–30 (2004), http://www.jot.fm; Special issue: OOPS track at SAC 2004

14. Itzstein, G.S., Kearney, D.: Join Java: an alternative concurrency semantics for Java. Techni-
cal Report ACRC-01-001, Univ. of South Australia (2001)

15. Milicia, G., Sassone, V.: Jeeg: Temporal Constraints for the Synchronization of Concurrent
Objects. Concurrency Computat.: Pract. Exper. 17, 539–572 (2005)

16. Keen, A.W., Ge, T., Maris, J.T., Olsson, R.A.: JR: Flexible distributed programming in an
extended java. TOPLAS 26, 578–608 (2004)

http://www.jot.fm

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 97–109, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Implementation of the IEEE 754R Decimal
Floating-Point Arithmetic

Marius Cornea, Cristina Anderson, and Charles Tsen

Intel Corporation

Abstract. The IEEE Standard 754-1985 for Binary Floating-Point Arithmetic [1] is
being revised [2], and an important addition to the current text is the definition of
decimal floating-point arithmetic [3]. This is aimed mainly to provide a robust, re-
liable framework for financial applications that are often subject to legal require-
ments concerning rounding and precision of the results in the areas of banking,
telephone billing, tax calculation, currency conversion, insurance, or accounting in
general. Using binary floating-point calculations to approximate decimal calcula-
tions has led in the past to the existence of numerous proprietary software pack-
ages, each with its own characteristics and capabilities. New algorithms are
presented in this paper which were used for a generic implementation in software
of the IEEE 754R decimal floating-point arithmetic, but may also be suitable for a
hardware implementation. In the absence of hardware to perform IEEE 754R
decimal floating-point operations, this new software package that will be fully
compliant with the standard proposal should be an attractive option for various fi-
nancial computations. The library presented in this paper uses the binary encoding
method from [2] for decimal floating-point values. Preliminary performance re-
sults show one to two orders of magnitude improvement over a software package
currently incorporated in GCC, which operates on values encoded using the deci-
mal method from [2].

Keywords: IEEE 754R, IEEE 754, Floating-Point, Binary Floating-Point,
Decimal Floating-Point, Basic Operations, Algorithms, Financial Computation,
Financial Calculation.

1 Introduction

Binary floating-point arithmetic can be used in most cases to approximate decimal
calculations. However errors may occur when converting numerical values between
their binary and decimal representations, and errors can accumulate differently in the
course of a computation depending on whether it is carried out using binary or deci-
mal floating-point arithmetic.

For example, the following simple C program will not have in general the expected
output b=7.0 for a=0.0007.

main () {
 float a, b;
 a = 7/10000.0;
 b = 10000.0 * a;

98 M. Cornea, C. Anderson, and C. Tsen

 printf ("a = %x = %10.10f\n",
*(unsigned int *)&a, a);

 printf ("b = %x = %10.10f\n",
*(unsigned int *)&b, b);

}

(The value 7.0 has the binary encoding 0x40e00000.) The actual output on a sys-
tem that complies with the IEEE Standard 754 will be:

a = 3a378034 = 0.0007000000
b = 40dfffff = 6.9999997504

Such errors are not acceptable in many cases of financial computations, mainly be-
cause legal requirements mandate how to determine the rounding errors - in general
following rules that humans would use when performing the same computations on
paper, and in decimal. Several software packages exist and have been used for this
purpose so far, but each one has its own characteristics and capabilities such as preci-
sion, rounding modes, operations, or internal storage formats for numerical data.
These software packages are not compatible with each other in general. The IEEE
754R standard proposal attempts to resolve these issues by defining all the rules for
decimal floating-point arithmetic in a way that can be adopted and implemented on all
computing systems in software, in hardware, or in a combination of the two. Using
IEEE 754R decimal floating-point arithmetic, the previous example could then be-
come:

main () {
 decimal32 a, b;
 a = 7/10000.0;
 b = 10000.0 * a;
 printf ("a = %x = %10.10fd\n",

*(unsigned int *)&a, a);
 printf ("b = %x = %10.10fd\n",

*(unsigned int *)&b, b);
}

(The hypothetical format descriptor %fd is used for printing decimal floating-point
values.) The output on a system complying with the IEEE Standard 754R proposal
would then represent the result without any error:

a = 30800007 = 0.0007000000
b = 32800007 = 7.0000000000

(The IEEE 754R binary encoding for decimal floating-point values was used in this
example.) The following section summarizes the most important aspects of the IEEE
754R decimal floating-point arithmetic definition.

2 IEEE 754R Decimal Floating-Point

The IEEE 754R standard proposal defines three decimal floating-point formats with
sizes of 32, 64, and 128 bits. Two encodings for each of these formats are specified: a
decimal-based encoding which is best suited for certain possible hardware implemen-
tations of the decimal arithmetic [4], and a binary-based encoding better suited for
software implementations on systems that support the IEEE 754 binary floating-point
arithmetic in hardware [5]. The two encoding methods are otherwise equivalent, and a
simple conversion operation is necessary to switch between the two.

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 99

As defined in the IEEE 754R proposal, a decimal floating-point number n is repre-
sented as

n = ±C ÿ 10e

where C is a positive integer coefficient with at most p decimal digits, and e is an in-
teger exponent. A precision of p decimal digits will be assumed further for the oper-
ands and results of decimal floating-point operations.

Compared to the binary single, double, and quad precision floating-point formats,
the decimal floating-point formats denoted here by decimal32, decimal64, and deci-
mal128 cover different ranges and have different precisions, although they have simi-
lar storage sizes. For decimal, only the wider formats are used in actual computations,
while decimal32 is defined as a storage format only. For numerical values that can be
represented in these binary and decimal formats, the main parameters that determine
their range and precision are shown in Table 1.

Table 1. IEEE 754 binary and IEEE 754R decimal floating-point format parameters

 Binary Formats
 single double quad

Prec. n=24 n=53 n=113
Emin –126 –1022 –16382
Emax +127 +1023 +16383

 Decimal Formats
 decimal32 decimal64 decimal128

Prec. p=7 p=16 p=34
Emin –101 –398 –6178
Emax +90 +369 +6111

The following sections will present new algorithms that can be used for an efficient
implementation in software of the decimal floating-point arithmetic as defined by the
IEEE 754R proposal. Mathematical proofs of correctness have been developed, but
will not be included here for brevity. Compiler and run-time support libraries could
use the implementation described here, which addresses the need to have a good
software solution for the decimal floating-point arithmetic.

3 Conversions between Decimal and Binary Formats

In implementing the decimal floating-point arithmetic defined in IEEE 754R, conver-
sions between decimal and binary formats are necessary in many situations.

For example, if decimal floating-point values are encoded in a decimal-based format
(string, BCD, IEEE 754R decimal encoding, or other) they need to be converted to bi-
nary before a software implementation of the decimal floating-point operation can take
full advantage of the existing hardware for binary operations. This conversion is rela-
tively easy to implement, and should exploit any available instruction-level parallelism.

The opposite conversion, from binary to decimal format may have to be performed
on results before writing them to memory, or for printing in string format decimal
numbers encoded in binary.

100 M. Cornea, C. Anderson, and C. Tsen

Another reason for binary-to-decimal conversion could be for rounding a decimal
floating-point result to a pre-determined number of decimal digits, if the exact result
was calculated first in binary format. The straightforward method for this is to convert
the exact result to decimal, round to the destination precision and then, if necessary,
convert the coefficient of the final result back to binary. This step can be avoided
completely if the coefficients are stored in binary.

The mathematical property presented next was used for this purpose. It gives a pre-
cise way to ‘cut off’ x decimal digits from the lower part of an integer C when its bi-
nary representation is available, thus avoiding the need to convert C to decimal,
remove the lower x decimal digits, and then convert the result back to binary. This
property was applied to conversions from binary to decimal format as well as in the
implementation of the most common decimal floating-point operations: addition, sub-
traction, multiplication, fused multiply-add, and in part, division.

For example if the decimal number C = 123456789 is available in binary and its
six most significant decimal digits are required, Property 1 specifies precisely how to
calculate the constant k3 ≈ 10-3 so that ⎣C ÿ k3⎦ = 123456, with certainty, while
using only the binary representation of C. The values kx are pre-calculated.
(Note: the floor(x), ceiling(x), and fraction(x) functions are denoted here by ⎣x⎦, ⎡x⎤ ,
and {x} respectively.)

Property 1. Let C œ N be a number in base b = 2 and
C = d0ÿ10q-1 + d1ÿ10q-2 + … + dq-2ÿ101 + dq-1 its representation in base B=10, where

d0, d1, … dq-1 œ {0, 1, … , 9} and d0 ≠ 0.
Let x œ {1, 2, 3, …, q–1} and r = log210.
If y œ N, y ¥ ⎡{r ÿ x} + r ÿ q⎤ and kx is the value of 10-x rounded up to y bits (the

subscript RP,y indicates rounding up y bits in the significand), i.e.:
 kx = (10-x)RP,y = 10–x ÿ (1 + ε) 0 < ε < 2–y+1
then ⎣C ÿ kx⎦ = d0ÿ10q-x-1 + d1ÿ10q-x-2 + d2ÿ10q-x-3 + … + dq-x-2ÿ101 + dq-x-1

Given an integer C represented in binary, this property specifies a method to remove
exactly x digits from the lower part of the decimal representation of C, without actu-
ally converting the number to a decimal representation. The property specifies the
minimum number of bits y that are necessary in an approximation of 10-x, so that the
integer part (or ‘floor’) of C ÿ kx will be precisely the desired result. The property
states that y ¥ ⎡{r ÿ x} + r ÿ q⎤ . However, in practice it is sufficient to take y = ⎡1 +
r ÿ q⎤ = 1 + ⎡r ÿ q⎤ where ⎡r ÿ q⎤ is the ‘ceiling’ of r ÿ q (e.g. ⎡33.3⎤ = 34). Note that ρ
= log210 ≈ 3.3219… and 2ρ = 10. For example if we want to remove the x lower
decimal digits of a 16-digit decimal number, we can multiply the number with an ap-
proximation of 10-x rounded up to y = 1 + ⎡r ÿ 16⎤ = 55 bits, followed by removal of
the fractional part in the product.

The relative error ε associated with the approximation of 10–x which was rounded
up to y bits satisfies 0 < ε < 2–y+1 = 2–⎡ρ·q⎤.

The values kx for all x of interest are pre-calculated and are stored as pairs (Kx, ex),
with Kx and ex positive integers:

kx = Kx · 2
–ex

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 101

This allows for implementations exclusively in the integer domain of some decimal
floating-point operations, in particular addition, subtraction, multiplication, fused
multiply-add, and certain conversions.

4 Decimal Floating-Point Addition

It will be assumed that

n1 = C1 · 10e1 C1 ∈ Z, 0 < C1 < 10p
n2 = C2 · 10e2 C2 ∈ Z, 0 < C2 < 10p

are two non-zero decimal floating-point numbers with coefficients having at most p
decimal digits stored as binary integers and that their sum has to be calculated,
rounded to p decimal digits using the current IEEE rounding mode (this is indicated
by the subscript rnd,p).

n = (n1 + n2)rnd,p = C · 10e
The coefficient C needs to be correctly rounded, and is stored as a binary integer as

well. For simplicity, it will be assumed that n1 ≥ 0 and e1 ≥ e2. (The rules for other
combinations of signs or exponent ordering can be derived from here.)

If the exponent e1 of n1 and the exponent e2 of n2 differ by a large quantity, the op-
eration is simplified and rounding is trivial because n2 represents just a rounding error
compared to n1. Otherwise if e1 and e2 are relatively close the coefficients C1 and C2
will ‘overlap’, the coefficient of the exact sum may have more than p decimal digits, and
so rounding may be necessary. All the possible cases will be quantified next.

If the exact sum is n’, let C’ be the exact (not yet rounded) sum of the coefficients:
n’ = n1 + n2 = C1 · 10e1 + C2 · 10e2 =

(C1 · 10e1 – e2 + C2) · 10e2
C’ = C1 · 10e1 – e2 + C2

Let q1, q2, and q be the numbers of decimal digits needed to represent C1, C2, and
C’. If not zero, the rounded coefficient C will require between 1 and p decimal digits.
Rounding is not necessary if C’ represented in decimal requires at most p digits, but it
is necessary otherwise.

If q ≤ p, then the result is exact:
n = (n’)rnd,p = (C’ · 10e2)rnd,p =

(C’)rnd,p · 10e2 = C’ · 10e2
Otherwise, if q > p let x = q – p ≥ 1. Then:

n = (n’)rnd,p = (C’ · 10e2)rnd,p =
(C’)rnd,p · 10e2 = C · 10e2+x

If after rounding C = 10p (rounding overflow), then n =10p-1 · 10e2+x+1.
A simple analysis shows that rounding is trivial if q1 + e1 – q2 – e2 ≥ p. If this is

not the case, i.e. if
|q1 + e1 – q2 – e2| ≤ p – 1

then the sum C’ has to be calculated and it has to be rounded to p decimal digits. This
case can be optimized by separating it in sub-cases as shall be seen further.

The algorithm presented next uses Property 1 in order to round correctly (to the desti-
nation precision) the result of a decimal floating-point addition in rounding to nearest
mode, and also determines correctly the exactness of the result by using a simple com-
parison operation. First, an approximation of the result’s coefficient is calculated using

102 M. Cornea, C. Anderson, and C. Tsen

Property 1. This will be either the correctly rounded coefficient, or it will be off by one
ulp (unit-in-the-last-place). The correct result as well as its exactness can be determined
directly from the calculation, without having to compute a remainder through a binary
multiplication followed by a subtraction for this purpose. This makes the rounding opera-
tion for decimal floating-point addition particularly efficient.

Decimal Floating-Point Addition with Rounding to Nearest. The straightforward
method to calculate the result is to convert both coefficients to a decimal encoding, per-
form a decimal addition, round the exact decimal result to nearest to the destination pre-
cision, and then convert the coefficient of the final result back to binary. It would also be
possible to store the coefficients in decimal all the time, but then neither software nor
hardware implementations could take advantage easily of existing instructions or cir-
cuitry that operate on binary numbers. The algorithm used for decimal floating-point
addition in rounding to nearest mode is Algorithm 1, shown further.

If the smaller operand represents more than a rounding error in the larger operand,
the sum C’ = C1 · 10e1–e2 + C2 is calculated. If the number of decimal digits q needed
to represent this number does not exceed the precision p of the destination format,
then no rounding is necessary and the result is exact. If q > p, then x = q – p decimal
digits have to be removed from the lower part of C’, and C’ has to rounded correctly
to p decimal digits. For correct rounding to nearest, 0.5 ulp is added to C’: C’’ = C’ +
1/2 · 10x. The result is multiplied by kx ≈ 10-x (C* = C’’ · kx), where the pre-calculated
values kx are stored for all x œ {1, 2, …, p}. A test for midpoints follows (0 < f* < 10–

p, where f* is the fractional part of C*) and if affirmative, the result is rounded to the
nearest even integer. (For example if the exact result 4567.5 has to be rounded to
nearest to four decimal places, the rounded result will be 4568.) Next the algorithm
checks for rounding overflow (p+1 decimal digits are obtained instead of p) and fi-
nally it checks for exactness.

Note that the straightforward method for the determination of midpoints and exact-
ness is to calculate a remainder r = C’ – C ÿ 10x ∈[0, 10x). Midpoint results could be
identified by comparing the remainder with 1/2·10x, and exact results by comparing
the remainder with 0. However, the calculation of a remainder – a relatively costly
operation – was avoided in Algorithm 1 and instead a single comparison to a pre-
calculated constant was used. This simplified method to determine midpoints and
exactness along with the ability to use Property 1 make Algorithm 1 more efficient for
decimal floating-point addition than previously known methods.

Algorithm 1. Calculate the Sum of Two Decimal Floating-point Numbers
Rounded to Nearest to p Decimal Digits, and Determine its Exactness.

q1, q2 = number of decimal digits needed to
represent C1, C2 // from table lookup
if |q1 + e1 – q2 – e2| ≥ p then
// assuming that e1 ≥ e2 round the result
// directly as 0 < C2 < 1 ulp (C1 · 10e1–e2);
the result n = C1 · 10e1 or
n = C1 · 10e1 ± 10e1+q1–p is inexact
else // if |q1 + e1 – q2 – e2| ≤ p – 1
C’ = C1 · 10e1–e2 + C2 // binary integer

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 103

// multiplication and addition;
// 10e1–e2 from table lookup

q = number of decimal digits needed to
represent C’ // from table lookup

if q ≤ p the result n = C’ ÿ 10e2 is exact
else if q ∈ [p+1, 2·p] continue
x = q – p, number of decimal digits to be

removed from lower part of C’, x ∈ [1, p]
C’’ = C’ + 1/2 · 10x // 1/2 · 10x

// pre-calculated, from table lookup
kx = 10–x ÿ (1 + ε), 0 < ε < 2–⎡2·ρ·p⎤

/ / pre-calculated as specified in Property 1
C* = C’’ · kx = C’’ · Kx · 2

–Ex
// binary integer multiplication with
// implied binary point

f* = the fractional part of C*
// consists of the lower Ex bits of the
// product C’’ · Kx

if 0 < f* < 10–p then
if ⎣C*⎦ is even then C = ⎣C*⎦

// logical shift right;
// C has p decimal digits,
// correct by Property 1

else if ⎣C*⎦ is odd then C = ⎣C*⎦ – 1
// logical shift right; C has p dec.
// digits, correct by Property 1

else C = ⎣C*⎦ // logical shift right; C has p
// decimal digits, correct by Property 1

n = C ÿ 10e2+x
if C = 10p then n = 10p–1 ÿ 10e2+x+1

// rounding overflow
if 0 < f* – 1/2 < 10–p then the result is exact
else it is inexact

Note that conditions 0 < f* < 10–p and 0 < f* – 1/2 < 10–p from Algorithm 1 for mid-
point detection and exactness determination hold also if 10–p is replaced by 10–x or
even by kx = 10–x ÿ (1 + ε). These comparisons are fairly easy in practice. For exam-
ple, since C’’·kx = C’’·Kx·2

–ex, in f*<10–p the bits shifted to the right out of C’’·kx,
representing f* can be compared with a pre-calculated constant that approximates 10–p
(or 10–x).

Decimal Floating-Point Addition when Rounding to Zero, Down, or Up. The
method to calculate the result when rounding to zero or down is similar to that for
rounding to nearest. The main difference is that the step for calculating C’’ = C’ + 1/2
· 10x is not necessary anymore, because midpoints between consecutive floating-point
numbers do not have a special role here. For rounding up, the calculation of the result
and the determination of its exactness are identical to those for rounding down. How-
ever, when the result is inexact then one ulp has to be added to it.

104 M. Cornea, C. Anderson, and C. Tsen

5 Decimal Floating-Point Multiplication

It will be assumed that the product
n = (n1 · n2)rnd,p = C · 10e

has to be calculated, where the coefficient C of n is correctly rounded to p decimal
digits using the current IEEE rounding mode, and is stored as a binary integer. The
operands n1 = C1 · 10e1 and n2 = C2 · 10e2 are assumed to be strictly positive (for
negative numbers the rules can be derived directly from here). Their coefficients re-
quire at most p decimal digits to represent and are stored as binary integers, possibly
converted from a different format/encoding.

Let q be the number of decimal digits required to represent the full integer product
C’ = C1 · C2 of the coefficients of n1 and n2. Actual rounding to p decimal digits will
be necessary only if q ∈ [p+1, 2·p], and will be carried out using Property 1. In all
rounding modes the constants kx ≈ 10–x used for this purpose, where x = q – p, are
pre-calculated to y bits as specified in Property 1. Since q ∈ [p+1, 2·p] for situations
where rounding is necessary, all cases are covered correctly by choosing y = 1+
⎡2·ρ·p⎤. Similar to the case of the addition operation, the pre-calculated values kx are
stored for all x œ {1, 2, …, p}.

Decimal Floating-Point Multiplication with Rounding to Nearest. The straight-
forward method to calculate the result is similar to that for addition. A new and better
method for decimal floating-point multiplication with rounding to nearest that uses
existing hardware for binary computations is presented in Algorithm 2. It uses Prop-
erty 1 to avoid the need to calculate a remainder for the determination of midpoints or
exact floating-point results, as shall be seen further. The multiplication algorithm has
many similarities with the algorithm for addition.

Algorithm 2. Calculate the Product of Two Decimal Floating-point Numbers
Rounded to Nearest to p Decimal Digits, and Determine its Exactness.

C’ = C1 · C2 // binary integer multiplication
q = the number of decimal digits required to
represent C’ // from table lookup
if q ≤ p then the result n = C’ ÿ 10e1+e2 is exact else if q ∈ [p+1, 2·p] continue
x = q – p, the number of decimal digits to be removed from the lower part of C’, x

∈ [1, p]
C’’ = C’ + 1/2 · 10x // 1/2 · 10x pre-calculated
kx = 10–x ÿ (1 + ε), 0 < ε < 2–⎡2·ρ·p⎤ // pre-calculated
// as specified in Property 1
C* = C’’ · kx = C’’ · Kx · 2

–Ex // binary integer
// multiplication with implied binary point
f* = the fractional part of C* // consists of the
// lower Ex bits of the product C’’ · Kx
if 0 < f* < 10–p then // since C* = C’’· Kx · 2

–Ex,
// compare Ex bits shifted out of C* with 0
// and with 10–p
if ⎣C*⎦ is even then C = ⎣C*⎦ // logical right

// shift; C has p decimal digits, correct by

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 105

// Property 1
else C = ⎣C*⎦ – 1 // if ⎣C*⎦ is odd // logical

// right shift; C has p decimal digits, correct
// by Property 1

else
C = ⎣C*⎦ // logical shift right; C has p

// decimal digits, correct by Property 1
n = C ÿ 10e1+e2+x // rounding overflow
if 0 < f* – 1/2 < 10–p then the result is exact
else the result is inexact
// C* = C’’ · Kx · 2

–Ex ⇒ compare Ex bits
// shifted out of C* with 1/2 and 1/2+10–p

If q ≥ p + 1 the result is inexact unless the x decimal digits removed from the lower
part of C’’ · kx were all zeros. To determine whether this was the case, just as for
addition, the straightforward method is to calculate a remainder r = C’ – C ÿ 10x ∈[0,
10x). Midpoint results could be identified by comparing the remainder with 1/2·10x,
and exact results by comparing the remainder with 0. However, the calculation of a
remainder – a relatively costly operation – was avoided in Algorithm 2 and instead a
single comparison to a pre-calculated constant was used.

The simplified method to determine midpoints and exactness along with the ability
to use Property 1 make Algorithm 2 better for decimal floating-point multiplication
than previously known methods.

Decimal Floating-Point Multiplication when Rounding to Zero, Down, or Up.
The method to calculate the result when rounding to zero or down is similar to that for
rounding to nearest. Just as for addition, the step for calculating C’’ = C’ + 1/2 · 10x is
not necessary anymore. Exactness is determined using the same method as in Algo-
rithm 2. For rounding up, the calculation of the result and the determination of its ex-
actness are identical to those for rounding down. However, when the result is inexact
then one ulp has to be added to it.

6 Decimal Floating-Point Division

It will be assumed that the quotient
n = (n1 / n2)rnd,p = C · 10e

has to be calculated where n1 > 0, n2 > 0, and q1, q2, and q are the numbers of deci-
mal digits needed to represent C1, C2, and C (the subscript rnd,p indicates rounding
to p decimal digits, using the current rounding mode). Property 1 cannot be applied
efficiently for the calculation of the result in this case because a very accurate ap-
proximation of the exact quotient is expensive to calculate. Instead, a combination of
integer operations and floating-point division allow for the determination of the cor-
rectly rounded result. Property 1 is used only when an underflow is detected and the
calculated quotient has to be shifted right a given number of decimal positions. The
decimal floating-point division algorithm is based on Property 2 presented next.

106 M. Cornea, C. Anderson, and C. Tsen

Property 2. If a, b are two positive integers and m ∈ N, m ≥ 1 such that b < 10m, a/b
< 10m and n ≥ ⎣m⋅log210⎦ , then | a/b– ⎣((a)rnd,n/(b)rnd,n)rnd,n⎦ | < 8.

The decimal floating-point division algorithm for operands n1 = C1⋅10e1 and n2 =
C2⋅10e2 follows. While this algorithm may be rather difficult to follow without work-
ing out an example in parallel, it is included here for completeness. Its correctness, as
well as that of all the other algorithms presented here has been verified.

Algorithm 3. Calculate the Quotient of Two Decimal Floating-point Numbers,
Rounded to p Decimal Digits in any Rounding Mode, and Determine its Exact-
ness.

if C1 < C2
 find the integer d > 0 such that (C1/C2)⋅10d ∈
[1, 10).
// compute d based on the number
// of decimal digits q1, q2 in C1, C2
 C1’ = C1⋅10d+15, Q = 0
 e = e1 – e2 – d – 15 // expected res. expon.
else
 a = (C1 OR 1)rnd,n, b = (C2)rnd,n // logical OR
 Q = ⎣((a/b)rnd,n)⎦
 R = C1 – Q ⋅ C2
 if R < 0
 Q = Q – 1
 R = R + C2
 if R = 0 the result n = Q ⋅ 10e1–e2 is exact
 else continue
 find the number of decimal digits for Q: d >

0 such that Q ∈ [10d–1, 10d)
 C1’ = R ⋅ 1016–d
 Q = Q ⋅ 1016–d
 e = e1 – e2 – 16 + d
Q2 = ⎣((C1’)rnd,n/(C2)rnd,n)rnd,n⎦
R = C1’ – Q2 ⋅ C2
Q = Q + Q2
if R ≥ 4 ⋅ C2
 Q = Q + 4
 R = R – 4 ⋅ C2
if R ≥ 2 ⋅ C2
 Q = Q + 2
 R = R – 2 ⋅ C2
if R ≥ C2
 Q = Q + 1
 R = R – C2
if e ≥ minimum_decimal_exponent
 apply rounding in desired mode by

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 107

comparing R and C2
// e.g. for rounding to nearest add 1 to Q
// if 5 ⋅ C2 < 10 ⋅ R + (Q AND 1)

 the result n = Q ⋅10e is inexact
else
 result underflows
 compute the correct result based on Prop. 1

7 Decimal Floating-Point Square Root

Assume that the square root

n = (√n1)rnd,p = C · 10e

has to be calculated (where the subscript rnd,p indicates rounding to p decimal digits
using the current rounding mode). The method used for this computation is based on
Property 3 and Property 4, shown next. A combination of integer and floating-point op-
erations are used. It will be shown next that the minimum precision n of the binary float-
ing-point numbers that have to be used in the computation of the decimal square root for
decimal64 arguments (with p = 16) is n = 53, so the double precision floating-point for-
mat can be used. The minimum precision n of the binary floating-point numbers that
have to be used in the computation of the square root for decimal128 arguments (with p =
34) is n = 113, so the quad precision floating-point format can be used safely.

Properties 3 and 4 as well as the algorithm for square root calculation are included
here for completeness.

Property 3. If x ∈ (1, 4) is a binary floating-point number with precision n and s =

(x)RN,n
is its square root rounded to nearest to n bits, then s + 2–n < x.

Property 4. Let m be a positive integer and n = ⎣m⋅log210+0.5⎦. For any integer

C∈[102⋅m–2, 102⋅m), the inequality | C –⎣√((C)RN,n)⎦ < 3/2 is true.

The round-to-nearest decimal square root algorithm can now be summarized as follows:

Algorithm 4. Calculate the Square Root of a Decimal Floating-point Number n1
= C⋅10e, Rounded to Nearest to p Decimal Digits, and Determine its Exactness.

if e is odd then
 e’ = e – 1
 C’ = C ⋅ 10
else
 e’ = e
 C’ = C
let S = ⎣√((C’)RN,n)⎦
if S * S = C’
 the result n = S ⋅ 10e’/2 is exact
else
 q = number of decimal digits in C

108 M. Cornea, C. Anderson, and C. Tsen

 C’’ = C’ ⋅ 102⋅p–1–q and Q = ⎣√((C’’)RN,n)⎦
 if (C’’ – Q ⋅ Q < 0) sign = –1 else sign = 1
 M = 2⋅Q + sign // will check against this

// midpoint for rounding to nearest
 if (M ⋅ M – 4 ⋅ C’’ < 0) sign_m = –1
 else sign_m = 1
 if sign ≠ sign_m Q’ = Q + sign else Q’ = Q
 the result n = Q’ ⋅ 10e’/2 is inexact

Decimal Floating-Point Square Root when Rounding to Zero, Down, or Up. The
algorithm shown above can be easily adapted for other rounding modes. Once Q is

computed such that | 'C' – Q| < 1.5, one needs to consider rounding the result coef-
ficient to one of the following values: Q–2, Q–1, Q, Q+1, Q+2, and only two of these

values need to be considered after the sign of ('C' – Q) has been computed.

8 Conclusions

A new generic implementation in C of the basic operations for decimal floating-point
arithmetic specified in the IEEE 754R standard proposal was completed, based on
new algorithms presented in this paper. Several other operations were implemented
that were not discussed here for example remainder, fused multiply-add, comparison,
and various conversion operations. Performance results for all basic operations were
in the expected range, for example the latency of decimal128 operations is compara-
ble to that of binary quad precision operations implemented in software.

It was also possible to compare the performance of the new software package for basic
operations with that of the decNumber package contributed to GCC [6]. The decNumber
package represents the only other implementation of the IEEE 754R decimal floating-
point arithmetic in existence at the present time. It should be noted that decNumber is a
more general decimal arithmetic library in ANSI C, suitable for commercial and human-
oriented applications [7]. It allows for integer, fixed-point, and decimal floating-point
computations, and supports arbitrary precision values (up to a billion digits).

Tests comparing the new decimal floating-point library using the algorithms described
in this paper versus decNumber showed that the new generic C implementations for addi-
tion, multiplication, division, square root, and other operations were faster than the
decNumber implementations, in most cases by one to two orders of magnitude.

Table 2 shows the results of this comparison for basic 64-bit and 128-bit decimal
floating-point operations measured on a 3.4 GHz Intel® EM64t system with 4 GB of
RAM, running Microsoft Windows Server 2003 Enterprise x64 Edition SP1. The
code was compiled with the Intel(R) C++ Compiler for Intel(R) EM64T-based appli-
cations, Version 9.0. The three values presented in each case represent minimum,
median, and maximum values for a small data set covering operations from very sim-
ple (e.g. with operands equal to 0 or 1) to more complicated, e.g. on operands with 34
decimal digits in the 128-bit cases. For the new library, further performance im-
provements can be attained by fine-tuning critical code sequences or by optimizing
simple, common cases.

 Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic 109

Table 2. New Decimal Floating-Point Library Performance vs. decNumber on EM64t (3.4 GHz
Xeon). Minimum-median-maximum values are listed in sequence, after subtracting the call
overhead.

Operation New Library
[clock cycles]

decNumber Li-
brary
[clock cycles]

dec
Number
/New
Library

64-bit ADD 14-140-241 99-1400-1741 4-10-14
64-bit MUL 21-120-215 190-930-1824 6-8-9
64-bit DIV 172-330-491 673-2100-3590 4-6-11
64-bit SQRT 15-288-289 82-16700-18730 7-58-107
128-bit ADD 16-170-379 97-2300-3333 4-13-14
128-bit MUL 19-300-758 95-3000-4206 5-10-18
128-bit DIV 153-250-1049 1056-2000-7340 4-8-9
128-bit SQRT 16-700-753 61-42000-51855 4-60-152

For example for the 64-bit addition operation the new implementation, using the

754R binary encoding for decimal floating-point, took between 14 and 241 clock
cycles per operation, with a median value around 140 clock cycles. For the same op-
erand values decNumber, using the 754R decimal encoding, took between 99 and
1741 clock cycles, with a median around 1400 clock cycles. The ratio shown in the
last column was between 4 and 14, with a median of around 10 (probably the most
important of the three values).

It is also likely that properties and algorithms presented here for decimal floating-
point arithmetic can be applied as well for a hardware implementation, with re-use of
existing circuitry for binary operations. It is the authors’ hope that the work described
here will represent a step forward toward reliable and efficient implementations of the
IEEE 754R decimal floating-point arithmetic.

References

1. IEEE Std. 754, IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. IEEE (1985)
2. IEEE Std. 754R Draft. Draft of the Revised IEEE Standard 754-1985 (2006),

http://754r.ucbtest.org/drafts/754r.pdf
3. Cowlishaw, M.: Decimal Floating-Point: Algorism for Computers. In: 16th IEEE Sympo-

sium on Computer Arithmetic (2003)
4. Erle, M., Schwarz, E., Schulte, M.: Decimal Multiplication with Efficient Partial Product

Generation. In: 17th Symposium on Computer Arithmetic (2005)
5. Peter Tang, BID Format, IEEE 754R Draft (2005),

http://754r.ucbtest.org/subcommittee/bid.pdf
6. Grimm, J.: Decimal Floating-Point Extension for C via decNumber, IBM, GCC Summit.

decNumber (2005), http://www.alphaworks.ibm.com/
7. /tech/decnumber

PART II

Software Engineering

Bridging between Middleware Systems: Optimisations
Using Downloadable Code

Jan Newmarch

Faculty of Information Technology, Monash University, Melbourne, Australia
jan.newmarch@infotech.monash.edu.au

Abstract. There are multiple middleware systems and no single system is likely
to become predominant. There is therefore an interoperability requirement be-
tween clients and services belonging to different middleware systems. Typically
this is done by a bridge between invocation and discovery protocols. In this paper
we introduce three design patterns based on a bridging service cache manager and
dynamic proxies. This is illustrated by examples including a new custom lookup
service which allows Jini clients to discover and invoke UPnP services. There is
a detailed discussion of the pros and cons of each pattern.

Keywords: Middleware, UPnP, Jini, Service oriented architecture, downloadable
code, proxies.

1 Introduction

There are many middleware systems which often overlap in application domains. For
example, UPnP is designed for devices in zero-configuration environments such as
homes [16], Jini is designed for adhoc environments with the capability of handling
short as well as long-lived services [19] while Web Services are designed for long run-
ning services across the Web [20]. There are many other middleware systems such as
CORBA, Salutation, HAVi etc each with their own preferred application space, and
these different application spaces will generally overlap to some extent1.

It is unlikely that any single middleware will become predominant, so that the sit-
uation will arise where multiple services and clients exist but belonging to different
middleware systems. To avoid middleware “silos”, it is important to examine ways in
which clients using one middleware framework can communicate with services using
another.

This issue is not new: the standard approach is to build a “bridge” which is a two-
sided component that uses one middleware on one side and another middleware on the
other. Examples include Jini to CORBA [13], Jini to UPnP [1], SLP to UPnP, etc. These
essentially replace an end-to-end communication between client and service by an end-
to-middle-to-end communication, where the middle (the bridge) performs translation
from one protocol to the other.

1 The middleware systems we are interested in involve discovery of services, rather than just
transport-level middleware such as HTTP connecting web browsers and HTTP servers.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 113–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 J. Newmarch

Newmarch [14] has investigated how a Jini lookup service can be embedded into a
UPnP device to provide an alternative to the bridging architecture. However, in practical
terms this is an invasive mechanism which requires changes to the UPnP device and
cannot be easily retro-fitted into devices.

Jini [2] is apparently unique in production-quality middleware sytems with service
discovery in that rather than giving some sort of remote reference to clients it down-
loads a proxy object into the client (the proxy is a Java object). Many of the obvious
security issues in this have already been addressed by Jini. It has also been claimed that
this will lead “to the end of protocols” [18]. In this paper we investigate the implica-
tions of downloadable code for bridging systems, and show that it can lead to many
optimisations.

Some of our work can be applied to middleware systems which support download-
able code but not discovery, such as JavaScript in HTML pages.

We illustrate some of these optimisations with a Jini-to-Web Services bridge and
others with Jini- to-UPnP bridge.

The principal contribution of this paper is that it proposes and demonstrates a number
of optimisations that could be considered to be additional architectural patterns that can
sometimes be applied to bridge between different middleware systems. The validity of
these patterns are demonstrated by discussion of several example systems and through
an implementation for bridging between UPnP services and Jini clients. However, the
patterns do have strong requirements on the client-side middleware: it must be possible
to dynamically download code to clients and to dynamically determine the content of
this downloaded code.

The structure of this paper is as follows: the next section discusses some general
properties of bridging systems and the following section discusses downloadable code
in this context. Section 4 introduces the first of three optimisations, one for transport-
level bridging. Section 5 considers service cache management and the following section
applies this to the second optimisation, for service-level transport. This is followed by a
section on device-level optimisation. Successive sections deal with event handling and
the implementation of a Jini-UPnP bridge based on these principles. We then assess
the proposals and consider the value and generality of our work, before a concluding
section.

Background knowledge of Jini may be found in Newmarch [13] and on the UPnP
home site [16].

2 Bridging

Nakazawa et al [12] discuss general properties of middleware bridges. They distinguish
three features

– Transport-level bridging concerns translation between two invocation protocols
where a client makes a request of a service. Examples of invocation protocols in-
clude SOAP and CORBA’s IIOP. Transport-level bridging is concerned with trans-
lating from the invocation of a request to its delivery, and also between any replies.

Bridging between Middleware Systems 115

– Service-level bridging involves the advertisement and discovery of services. Exam-
ples of discovery protocol include CORBA’s use of a Naming service and UPnP’s
Simple Service Discovery Protocol.

– Device-level bridging concerns the semantics of services.

Transport level bridging includes translating between the data-types carried by each
protocol. For example for Web Services using SOAP, these are XML data-types while
for Java RMI using JRMP these are serialisable Java objects. There are usually problems
involved in such conversions. Vinoski [17] points to the mismatch between Java data-
types and XML data-types. While he goes on to examine the consequences for JAX-
RPC, the same issues cause problems converting from SOAP data-types to Java objects
on JRMP. Newmarch [14] discusses the mismatch between UPnP data-types and Java
objects and concludes that the UPnP to Java mapping is generally okay but the opposite
direction is not. There is no general solution to the data-mapping problem, and indeed
the use of the so-called ”language independent” XML in some middleware systems
appears to have exacerbated this. Services where the data-types are not convertable
cannot be bridged. This paper does not address this issue.

While the transport protocol is usually end-to-end, the discovery protocol may be
either end-to-end as in UPnP or involve a third party. Dabrowski and Mills [6] term
this third-party a service cache manager (SCM). Examples of such a manager are the
Jini lookup service, the CORBA and RMI Naming service and UDDI (although this
does not seem to be heavily used). The implications for service-level bridging involve
the discovery protocol: in an end-to-end discovery system the service-level bridge will
need to understand how to talk directly to services and/or clients, while with a service
cache manager the bridge will need to understand how to talk to the service cache
manager.

Device-level bridging concerns the meaning of “service” in different middleware
systems, and how services (and devices) are represented.

In general a bridge system will look like Figure 1.

Fig. 1. Typical bridge system

3 Downloadable Code

There are many examples where code is downloaded from one computer to execute in
another. These include JavaScript in HTML pages, Safe-Tcl [11] and Erlang [4]. Jini

116 J. Newmarch

as a service-oriented architecture makes use of RMI to download a proxy object rep-
resenting a service into a client. This changes the nature of the client/service transport
protocol since that is now managed by the proxy object, not by the client-the client
just makes local calls on the proxy. The Java Extensible Remote Invocation framework
(Jeri) in Jini 2.0 allows the proxy and service to use any protocol that they choose.

Proxy/service communication in Jini can be represented in Figure 2.

Fig. 2. Proxy communication

The pattern of communication of Figure 2 can also be employed by JavaScript using
the Ajax extensions [8], and is used by Google Maps and Google Mail for example,
although the communication is restricted to HTTP calls.

4 Optimising Transport-Level Bridging

Transport-level bridging involves the bridge receiving messages from a client using the
client’s transport protocol, translating them into messages for the service and sending
them using the service’s transport protocol. Responses are handled in a similar way.

Many internet protocols specify all components of the interaction between clients,
services and service cache managers. For example, UPnP specifies the search and dis-
covery protocols and also the protocol for procedure call interaction between client and
service as SOAP. However, as was shown by Java RMI over CORBA’s IIOP instead of
JRMP, and also by CORBA’s use of Naming and Trader services, there is no necessary
link between discovery and invocation. As long as a client and service are using the
same invocation protocol they can interact directly.

For UPnP and many systems there is little choice since the invocation protocol is
fixed by the middleware specification. However, Jini 2.0 allows a “pluggable” commu-
nications protocol. While most systems would require the client to have the communi-
cations protocol “hard coded” (or loadable from local files), Jini allows a service proxy
to be downloaded from a lookup service (service cache manager) to a client, and this
can carry code to implement any desired communicaration protocol.

In a similar but less flexible way, the Ajax XMLHttpRequest object can exchange
any type of data with its originating service. Usually this is XML data, but could be
other types such as JSON [9]

In the most common situations, the service proxy communicates with its bridge ser-
vice. However, a transport-level bridge is just there to translate and communicate be-
tween the client and the service. If the code to do this translation is moved into the proxy,
then the transport-level component of the bridge service becomes redundant. That is, the
client makes local calls on the proxy, which makes calls directly to the service using
the service’s transport protocol. One leg of the middleware has been removed. This is
illustrated in Figure 3.

Bridging between Middleware Systems 117

Fig. 3. Removing one transport step

This optimisation improves performance by

– removing one serialisation step
– removing one deserialisation step
– removing one network transport leg

In addition, the conversion to the destination protocol is performed once at the client-
side. There are some systems such as that of Nakazawa et al [12] in which the bridge
performs conversion from source data-types to an intermediate “standard” type and
from there to the destination type. This (or even just conversion from source transport
data-types to destination transport data-types) introduce possibilities for semantic prob-
lems which are mitigated by a single conversion step at the client-side.

This pattern has been used by Newmarch [15] to show how a Jini client can commu-
nicate with a Web Service. The proxy uses SOAP, the transport protocol for the Web
Service. The conversion from Java data-types to XML data-types is performed by the
JAX-RPC package (which cannot do a perfect conversion job, as mentioned earlier).
The role of the bridge is just there to advertise the Web Service to the Jini federation
and to upload a proxy to the Jini lookup service.

This pattern can also be used by Jini clients to talk to CORBA services, since Jini
can directly generate proxies that use IIOP.

Casati [5] shows how JavaScript downloaded into a browser can talk directly to Web
Services instead of the moreusual HTML-Servlet-Web Service (or similar)bridge (as typ-
ified by the web site www.xmethods.com). Casati employs the XMLHttpRequest
object which allows a browser to communicate with an HTTP server asynchronously.
This is usually used to exchange data between the browser and original page server. But
as Web Services typically use SOAP over HTTP, Casati gives JavaScript for the object to
be used as a proxy to talk directly to the Web Service.

In a later section we discuss how we use this pattern for a Jini client to talk to a UPnP
service.

5 Service Cache Manager

Service cache managers are expected to store “services” in some format and deliver
them to clients. The stored service can be a simple name/address pair as in naming

118 J. Newmarch

systems such as Java RMI or CORBA, complex XML structures linked to WSDL URLs
for Web Services in UDDI directories, or other possibilities. The Jini lookup service
stores service proxy objects, along with type information to locate them.

When clients and services are trying to locate a service cache manager, there is often
an assumed symmetry, that the client and service are searching for the same thing. In
our examples above, this occurs in all of naming services, UDDI registries and Jini
lookup services.

Once found though, clients and service do different things: services register whereas
clients look for services. The Jini ServiceRegistrar for example contains two
sets of methods, one for services (register()) and one for clients (lookup()).
UDDI similarly has two sets of messages, but there are more of them since UDDI has
a more complex structure [3]. Conceptually, there should be one protocol for services
discovering caches and another for clients discovering them, with different interfaces
exposed to each.

6 Optimising Service-Level Bridging

The standard bridge acts as a client to one discovery protocol and as service to the
other. For example, in a Jini/UPnP bridge [1] UPnP device advertisements are heard by
a bridge acting as a UPnP control point, which re-advertises the service as a Jini service.
In addition, it also acts as a transport-level bridge.

As a second optimisation we propose folding the service cache managers into the
bridge, to just leave service-level bridging as in Figure 4.

Fig. 4. Optimised service-level bridging

As an illustration of this, we have built a lookup service as a service-level bridge
which listens for UPnP device advertisements on one side. It can handle device regis-
tration and device farewells and will deal with device renewals, timing out if they are
not received. In this respect it acts like a UPnP control point, but unlike a control point it
does not send any action calls to the UPnP device or register itself for events. The other
side of the service-level bridge handles requests from Jini clients, primarily a discovery
request for the lookup service.

The lookup service will act like a normal Jini lookup service as far as the Jini client
is concerned and return a lookup service proxy. The Jini client will be a normal Jini
client and uses the lookup service to search for a service using the standard Jini API.

Bridging between Middleware Systems 119

If the lookup service knows of UPnP devices that deliver the service, it will prepare a
proxy for the UPnP device and send it back to the Jini client.

This optimisation is only useful in conjunction with the first one. Transport-level
bridging or its replacement will still need to be in place. If there is no replacement then
little is gained by separating transport-level and service-level bridging. However, when
the transport-level bridge is replaced by a smart proxy then it is possible to just keep
the service-level bridge.

This is at present a practical restriction on the applicability of this pattern, since
there do not appear to be many middleware systems in practical use apart from Jini
that support both downloadable proxies and discovery services. However, this could be
expected to change with future development of more advanced service oriented frame-
works (for example, see Edwards [7]).

7 Device-Level Bridging

Different middleware systems have different basic ideas of services. Many systems such
as CORBA, Jini and WebServices only have the notion of services. Others like UPnP
and Bluetooth have devices. UPnP devices contain a number of services (and possibly
other devices, recursively).

The different systems give different meanings to discovery. For example, the UPnP
on/off light is a BinaryLight device containing a SwitchPower service. Jini
has no concept of BinaryLight’s and can only look for a SwitchPower ser-
vice. So a Jini client cannot search for a binary light device but only some subset
(as a collection) of the service interfaces offered. On the other hand, UPnP advertises
the binary light device and the services, but with separate messages for each service,
rather than as a group. UPnP devices usually only have one service although some
may have more. For example, an internet gateway device may have several services
and embedded devices. This device has a total service list of Layer3Forwarding,
WANCommonInterfaceConfig, WANDSLLinkConfig and WANPPPConnec-
tion. In general, a Jini service may implement a number of service interfaces, and
a Jini client may request a service that simultaneously implements a number of inter-
faces.

In the case of UPnP, services are described by XML documents, while Jini services
are described by Java interfaces. We have defined a standard mapping from UPnP ser-
vices to Jini services. For example, the UPnP service description for a SwitchPower
service is

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:...">

...
<actionList>
<action>
<name>SetTarget</name>

<argumentList>
<argument>
<name>newTargetValue</name>
<relatedStateVariable>Target

120 J. Newmarch

</relatedStateVariable>
<direction>in</direction>

</argument>
</argumentList>

</action>
...

</actionList>
...

</scpd>

Our mapping translates this into the Java interface (along with a suitable definition
of Target)

public interface SwitchPower
extends Remote {

void SetTarget(Target newTargetValue)
throws RemoteException;

...
}

The service-level bridge will need to be able to translate from one representation to
the other. A direct approach is to store a table mapping each service. In the case of
UPnP and Jini, the table would just hold UPnP service names matched to Java class
files. At this stage, the service-level bridge will be responsible for creating the proxy,
and to do this it needs the class files for the service interfaces. While it would be fine for
the bridge to have class files for the set of “standard” devices and services maintained
by the UPnP Consortium, it would not allow for new, unknown services to be managed.

New UPnP services would require the service-transport bridge to examine in detail
the UPnP service description and generate source code for the Java interface. Then
compile this on the fly using a local Java compiler (such as javac or Kirby’s dynamic
compiler [10]). This is similar to dynamic compilation of JSP and servlets by servlet
engines such as Tomcat. The resultant class files can be cached against repeated use.

Similar mechanisms may be needed for bridging between any middleware systems
where new and unknown services may be presented to the service-level bridge. This
will depend on what information is required by the bridge in order to create a proxy.

8 Optimising Device-Level Bridging

In the architecture proposed so far, the service-level bridge needs to be able to gener-
ate a proxy to represent the original service. For a Jini client, this requires class files
on the lookup service for the Java interfaces, and for unknown service types these will
need to be generated by the bridge. This will involve detailed introspection of the ser-
vice descriptions and use of a Java compiler. While dynamic compilation of JSP pages
demonstrates that this is feasible, it nevertheless has overheads.

The Jini client on the other hand has to know the service interface, otherwise it can-
not ask for a service proxy. So if knowledge of the Java interfaces can be deferred to the

Bridging between Middleware Systems 121

client side, then it just becomes a lookup of already instantiated classes. The name of
the interface is all that is required for the client to find the interface class2 .

The Jini lookup service already downloads a proxy to the client to represent it. This
has not been shown in the figures so far as it is a Jini-specific (but standard) detail.
Usually this proxy just makes remote calls back to the lookup service. However, just like
any downloaded code, the proxy can be designed to perform any functions on the client
side (subject to security constraints). In particular, on a lookup operation the proxy
could just pass back to the lookup service enough to allow a match to be made, and on
success the lookup service could pass back just enough for the lookup service’s proxy
to create a proxy for the original service. In the case of a UPnP/Jini bridge, the minimal
information is the names of the interfaces required, and the returned information just
needs to be the URL of the UPnP device description. These are enough for a proxy to
be created on the client-side that can talk to the UPnP service. See Figure 5 for the final
system.

Fig. 5. Optimised service-level bridging

9 Event Handling

The discussion so far has used the remote procedure call paradigm. However, there
are other possibilities such as an asynchronous callback mechanism where the service
makes calls back to the client. This is easily handled by the proposed systems, as the
proxy just registers itself as the callback address.

10 Implementation of Optimised Jini-UPnP Bridging

There is an open source implementation of UPnP devices and control points by Cyber-
Garage (Konno, 2006). This is very closely modelled on the UPnP Device Architecture
specification (UPnP Consortium, 2006a). It exposes an API to allow a client to create
a ControlPoint which can listen for device announcements, to determine the ser-
vices within the device and it has methods to prepare parameters and make action calls
on UPnP services. It also supports getting device information such as friendly name and
registering as listener for state variable change events.

2 The client has to know the interfaces it is interested in. It should not know the implementation
classes. This is addressed in the implementation section.

122 J. Newmarch

We use this in our lookup service to monitor UPnP devices and keep track of the
services that are available, as well as device information.

The CyberGarage API treats UPnP devices and services using a DOM-oriented
model, unlike the SOA-oriented manner of Jini. We use the UPnP to Java mapping
discussed earlier to translate between the two representations.

In our implemention, we use the Java Proxy class to give a dynamic proxy. This
proxy implements all of the services on a UPnP device that are requested by the client.
The proxy is supplied with the device URL so that it can access the device descrip-
tion. This description contains the URLs for action calls, for registering listeners and
for the presentation. The Jini proxy requires an invocation handler. We use the Cyber-
Garage classes to build a generic handler to deal with SOAP calls to the device. The
CyberGarage classes and this handler are downloaded from the bridge to the client.
This avoids the need for the bridge to know the service interfaces at all and allows the
client to only know the service interfaces.

The proxy implementation uses the CyberGarage library, but only for the control com-
ponents of the CyberGarage ControlPoint. That is, it is used to prepare and make SOAP
action calls and to register and listen for UPnP events. However, it does not listen for
devices, since that is done by the bridging lookup service. When a method call is made
on the service proxy it uses the control point to make a SOAP remote procedure call.

Our current implementation relies heavily on the CyberGarage library, but only on
the control point code. The device advertisement code is not used. Only a part of the
control point code is used by the bridging lookup service to monitor devices while
another part is used by the service proxy to make action calls and listen for events.
However, the CyberGarage code is tightly interwoven, and it was not possible to use
only the relevant parts. The lookup service has to import almost all of the library, as
does the service proxy. It should be possible to produce a lighter-weight version for
each with only the required partial functionality.

11 Assessment

Any “optimisation” often has both positive and negative sides. We try to offer a balanced
viewpoint on the advantages and disadvantages of our pattern.

11.1 Transport-Level Optimisation

In transport-level optimisation, we place the code to perform service invocation directly
in the proxy downloaded to the client. The principal advantages of this are

– perfomance improvement by removing one serialisation step
– perfomance improvement by removing one deserialisation step
– perfomance improvement by removing one network transport leg
– reducing the risk of semantic mismatches between client and service data-types by

reducing the number of data conversion steps.

The ma jor disadvantage is that code has to be downloaded to the client that is capable
of talking directly to the service. This is generally downloaded from an HTTP server.
Some examples follow

Bridging between Middleware Systems 123

– Casati[5] gives JavaScript that can be downloaded to a web browser such as Firefox
or IE that can make function calls on Web Services. This requires just 10kbytes of
JavaScript source code. This relies on the extensive libraries and support within the
browsers for many of the library calls made.

– Newmarch [15] discusses a Jini proxy that can make function calls on Web Ser-
vices. The particular implementation used there makes use of the Apache Axis ob-
jects Call, QName and Service. These classes and all the classes they depend
on are substantial in size–over 900kbytes. There are clear redundancies in this: for
example, there are many classes which deal with WSDL document processing, and
this is not needed by the proxy.

– For the Jini UPnP proxy discussed here, the CyberGarage classes are used. These
classes are 270kbytes in size. However, the jar file also contains the source code for
the package. Removing these reduces the size to 160kbytes and a specialised ver-
sion could be even smaller. CyberGarage also requires an XML parser to interpret
SOAP responses. The default parser (Xerces) and associated XML API package
are over 1Mbyte in size which is substantial for an HTTP download. The kXML
package can be used instead, and this is a much more reasonable 20kbytes and
there is even a light version of this. This gives a total of 180kbytes which is accept-
able for any Jini client–the reference implementation of Sun’s lookup service takes
50kbytes just by itself.

The actual amount of code downloaded depends on the complexity of the proxy and the
degree of support that already exists in the client. These three examples show variations
from 10kbytes to nearly 1Mbyte.

11.2 Service-Level Optimisation

The standard bridge requires upto two service cache managers, one for each discovery
protocol. In addition, the bridge has to act as a client to discover the original service and
as a service to advertise to the original client. Service-level optimisation reduces this to
two halves of two SCMs: one half to listen to service adverts, the other half for the
original client to discover the service. UPnP does not have an SCM and control points
listen directly to service adverts, which reduces the savings somewhat.

On the downside, it is necessary to write parts of service cache managers. Although
this is not inherently difficult, knowledge of how to do this and API support by mid-
dleware systems is not so widespread as for writing simple clients and services. Jini
has the necessary classes, but there are no tutorials on how to write a lookup service.
CyberGarage has support for control points, but this is tightly woven with the device
code and so contains redundant code.

In addition, the need to possibly perform introspection on service descriptions, to
generate appropriate client-side definitions and to compile them are disadvantages.

11.3 Device-Level Optimisation

This optimisation gains by removal of some code (introspection, generation of inter-
faces and compilation) completely. On the other hand, code to generate the proxy is

124 J. Newmarch

just moved into the client. In the case of Jini, most of this code is already present in
the client from the Jini libraries and does not represent much of an overhead. For other
systems it may be more costly.

11.4 Generality

The design patterns discussed in this paper rely on a number of properties of the two
middleware systems in order to be applicable

– it must be possible for a service cache manager to be used in each middleware
system. In practise this is not an onerous provision and it can be applied even to
systems such as UPnP which do not require an SCM.

– There must be a (sufficiently good) mapping of the datatypes from service system
to client system. This allows UPnP services to be called from Jini clients, but would
limit the scope of Jini services that could be invoked by UPnP clients. As another
example, the flexibility of XML data-types means that it should be possible to mix
Jini clients with Web Services, and Jini services with Web Service clients.

– It must be possible to download code from the SCM to run in either the client or
service. In our case study, we have downloaded code to the client that understands
the service invocation protocol, but it would work equally well if code could be
downloaded to the service that understands the client invocation protocol. Without
this, the recipient would already need to know how to deal with a foreign invocation
protocol, which would largely defeat the value of the pattern.

The third point is the most difficult to realise in practise. Many languages support dy-
namic code execution: most interpreted languages have an equivalent of the eval()
mechanism, through to dynamic linking mechanisms such as dynamic link libraries
of compiled, relocatable code.However, the only major language supporting dynamic
downloads of code across a network appears to be Java, and the principal middleware
system using this is Jini. Given some level of dynamic support, adding network capabil-
ities to this is not hard: the author wrote a few pages of code as proof of concept to wrap
around the Unix C dlopen() call to download compiled code across the network into
a C program.

12 Value of Work

The value of mixing different middleware systems can be seen by a simple example.
Through UPnP, various devices such as hardware-based clocks and alarms can be man-
aged. A stock exchange service may be available as a Web Service. A calendar and
diary service may be implemented purely in software as a Jini service. Using the tech-
niques described in this paper, a Jini client could access all of these. Acting on events
from UPnP clocks to trigger actions from the Jini diary the client could query the Web
Service stock exchange service and ring UPnP alarms if the value of the owner’s shares
has collapsed.

In addition to extending the use of clients and services, there are also some side
benefits:

Bridging between Middleware Systems 125

– Jini has suffered by a lack of standards work for Jini devices and device services,
with a corresponding lack of actual devices. This work allows Jini to ”piggyback”
on the work done now and in the future by the UPnP Consortium and to bring a
range of standardised devices into the Jini environment. Jini clients will be able to
invoke UPnP services in addition to services specifically designed for Jini.

– UPnP is a device-centric service architecture. It allows clients to use services on
devices, but has no mechanism for UPnP clients to deal with software-only services
since they cannot be readily expressed in UPnP. Work is ongoing within the UPnP
Consortium to bring WSDL descriptions into the UPnP world. Jini clients on the
other hand are agnostic to any hardware or software base, and can mix services of
any type.

Both middleware systems have limitations–in the case of Jini, in the types of services
that can be accessed, and in the case of UPnP, in the range of services that can be offered.
Other middleware systems will have similar limitations. For example, Web Services
tend to deal with long-lived services at well-known addresses whereas Jini can handle
transient services

13 Conclusions

We have proposed a set of alternative architectures to bridge between different middle-
ware systems which uses a service cache bridge and a downloadable proxy understand-
ing the service or client invocation protocol. In addition, we have used this between
Jini and UPnP and we have automated the generation and runtime behaviour of this
proxy from a UPnP specification. This has been demonstrated to give a simple solution
for UPnP services and Jini clients. The techniques are applicable to any client protocol
which supports downloadable code and any service protocol.

References

1. Allard, J., Chinta, V., Gundala, S., Richard, III.G.G.: Jini meets upnp. In: Proceedings of the
Applications and the Internet (SAINT) (2003)

2. Arnold, K.: The Jini Specification. Addison-Wesley, Reading (2001)
3. Bellwood, T.: Uddi version 2.04 api specification. (2002) (Retrieved, July 7, 2006), http://

uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
4. Brown, L., Sablin, D.: Extending erlang for safe mobile code execution. In: Varadharajan,

V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 39–53. Springer, Heidelberg (1999)
5. Casati, M.: Javascript soap client. (2006) (Retrieved, July 7, 2006),

http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp
6. Dabrowski, C., Mills, K.: Analyzing properties and behavior of service discovery protocols

using an In: Proc. Working Conference on Complex and Dynamic Systems Architecture
(2001)

7. Edwards, W.K., Newman, M.W., Smith, T.F., Sedivy, J., Izadi, S.: An extensible set-top box
platform for home media applications. IEEE Transactions on Consumer Electronics 4(51)
(2005)

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp

126 J. Newmarch

8. Garrett, J.J.: Ajax: a new approach to web applications. (2005) (Retrieved, July 7, 2006),
http://www.adaptivepath.com/publications/essays/archives/
000385.php

9. JSON, Json in javascript. (2006) (Retrieved, July 7, 2006),
http://www.json.org/js.html

10. Kirby, G.: Dynamic compilation in java. (2005) (Retrieved, July 7, 2006),
http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation

11. Levy, J.Y., Ousterhout, J.K., Welch, B.B.: The safe-tcl security model. Technical report,
Sun Microsystems. (1997) (Retrieved, July 7, 2006), http://research.sun.com/
technical-reports/1997/abstract-60.html

12. Nakazawa, J., Edwards, W., Tokuda, H., and Ramachandran, U.: A bridging framework for
universal interoperability in pervasive systems. In: ICDCS (2006) (Retrieved, July 7, 2006),
www-static.cc.gatech.edu/ keith/pubs/ icdcs06-bridging.pdf

13. Newmarch, J.: A Programmers Guide to Jini. APress (2001)
14. Newmarch, J.: Upnp services and jini clients. In: ISNG, Las Vegas (2005)
15. Newmarch, J.: Foundations of Jini 2 Programming. APress (2006)
16. UPnP Consortium, Upnp home page. (2006) (Retrieved, July 7, 2006),

http://www.upnp.org
17. Vinoski, S.: Rpc under fire. IEEE Internet Computing (2005)
18. Waldo, J.: The end of protocols. (2000) (Retrieved July 7, 2006), http://java.

sun.com/developer/technicalArticles/jini/protocols.html
19. Waldo, J.: An architecture for service oriented architectures. (2005) (Retrieved July 7, 2006),

http://www.jini.org/events/0505NYSIG/WaldoNYCJUG.pdf
20. Consortium, W.W.W.: Web services home page. (2002) (Retrieved July 7, 2006),

http://www.w3.org/2002/ws

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.json.org/js.html
http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation
http://research.sun.com/technical-reports/1997/abstract-60.html
http://research.sun.com/technical-reports/1997/abstract-60.html
http://www.upnp.org
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://java.sun.com/developer/technicalArticles/jini/protocols.html
http://www.jini.org/events/0505NYSIG/WaldoNYCJUG.pdf
http://www.w3.org/2002/ws

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 127–135, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MDE for BPM: A Systematic Review

Jose Manuel Perez, Francisco Ruiz, and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha
Paseo de la Universidad, 4, 13071, Ciudad Real, Spain

JoseM.Perez2@alu.uclm.es, Francisco.RuizG@uclm.es
Mario.Piattini@uclm.es

Abstract. Due to the rapid change in the business processes of organizations,
Business Process Management (BPM) has come into being. BPM helps busi-
ness analysts to manage all concerns related to business processes, but the gap
between these analysts and people who build the applications is still large. The
organization’s value chain changes very rapidly; to modify simultaneously the
systems that support the business management process is impossible. MDE
(Model Driven Engineering) is a good support for transferring these business
process changes to the systems that implement these processes. Thus, by using
any MDE approach, such as MDA, the alignment between business people and
software engineering should be improved. To discover the different proposals
that exist in this area, a systematic review was performed. As a result, the
OMG’s Business Process Definition Metamodel (BPDM) has been identified as
the standard that will be the key for the application of MDA for BPM.

Keywords: Business process management, Model driven engineering, Model
driven architecture, Systematic review.

1 Introduction

There is a need for today’s business to create and modify value chains rapidly. This
brings about continuous growth and change in business processes. The goal of Busi-
ness Process Management (BPM) is to help business people to manage these changes.

Business process management is defined as the capability to discover, design, de-
ploy, execute, interact, operate, optimize and analyze process in a way that is com-
plete, doing it at the business design level and not at the technical implementation
level [1].

BPM offers numerous benefits to organizations such as improving the speed of
business, giving increased customer satisfaction, process integrity and accountability.
It promotes process optimization, at the same time eliminating unnecessary tasks. It
also includes customers and partners alike in the business processes and provides
organizational agility.

BPM represents a “third wave” in business process engineering. The first wave
was guided by process papers that reorganized human activity. The second wave
focused on reengineering of business processes and the use of Enterprise Resource
Planning (ERP). The third wave centers on formal business process models and the

128 J.M. Perez, F. Ruiz, and M. Piattini

ability to modify and combine those models so as to align business process with or-
ganizational needs [2].

BPM starts with process modeling. Process modeling is a business-driven exercise
in which current and proposed process flows are documented in detail, linked to quan-
tifiable performance metrics, and optimized through simulation analysis. Standards
for process modeling languages are the key to the attaining of BPM’s goal as well as
in achieving the platform independence of the process models. Platform independence
is one of the principles on which Model Driven Engineering (MDE) is based. The
combination of both concepts, MDE and BPM, is the target of this systematic review.

MDE was conceived in an effort to solve several problems that have arisen in the
last decade. On one hand, the growth of platform complexity, there being thousands
of classes and methods with very complicated dependencies. On the other hand, we
can observe the continuous technological evolution of the systems, forcing program-
mers to modify the system code every time a new requirement is given.

In the MDE paradigm, every concept must be modeled. Thus, any change in the
system must be shown in the model that represents that system. To model the sys-
tems, MDE proposes using Domain-Specific Modeling Languages (DSML). By
means of these languages, different modeling notations for each kind of system are
achieved. Thus, the software engineer has specific tools for modeling all kind of sys-
tems.

Another important concept in MDE is model transformation. By transforming
models, the evolution of the systems is facilitated. A model could be transformed to
another model or to a XML specification as well as to the source code that imple-
ments the model functionality.

The OMG group has developed Model Driven Architecture (MDA) as an example
of MDE. MDA emerged with the established idea of separating the business logic
specification of a system from the platform specific details in which the system is
implemented [3].

MDA adds some concepts to the MDE philosophy. MDA defines three level of ab-
straction. The Computational Independent Model (CIM), the Platform Independent
Model (PIM) and the Platform Specific Model (PSM).

The key technology in MDA is MOF, as it is as in the definition of metamodels,
which are MOF instances (figure 1) [4]. The transformations among these models are
the basis of MDA philosophy.

Fig. 1. MOF metamodels structure [4]

 MDE for BPM: A Systematic Review 129

The structure of this paper is as follows. In section 2, systematic reviews are intro-
duced. In section 3, the carrying out of the review is shown in part, presenting the
selection of studies and the classification of these. The information analysis is de-
scribed in section 4 by summarizing the different authors’ proposals about the MDE
for BPM application. Section 5 presents the conclusions extracted from the systematic
review along with future work, taking into account the different views found.

2 Systematic Reviews

A systematic review of the literature is a means of identifying, evaluating and inter-
preting all available research relevant to a particular research question, or topic area,
or phenomenon of interest [5].

Systematic review is a scientific methodology that can be used to integrate empiri-
cal research on software engineering [6].

Some of the characteristics that make the above methodology different from a con-
ventional review are that a systematic review starts by defining a review protocol that
specifies the research question, along with the methods and the criteria to drive the
review. Added to all this, a systematic review is based on a search strategy that aims
to detect as much relevant literature as possible. Moreover, performing a systematic
review is needed in order to document the whole search strategy so that another re-
searcher can replicate the same review with identical results.

There are three main phases that organize the different stages of the review process.
The phase called “planning the review” has as its purpose to identify the need for

this study and to see through the development of a review protocol. A researcher may
need a systematic review to be able to draw more general conclusions about a phe-
nomenon or as a prelude to further research activities.

The protocol specifies the methods that will be used to undertake a specific sys-
tematic review. A pre-defined protocol is needed to avoid the possibility of researcher
bias. Without a protocol, the selection of individual studies might possibly be driven
by the expectations of the researcher.

When the whole planning is done, the review can start. This is the second phase,
called “conducting the review”. This phase lies in the identification of research, the
selection of primary studies, the quality assessment study, data extraction and moni-
toring, together with data synthesis.

Firstly, the researcher must search the documents by using the strings specified in
the protocol. When a first potential set of primary studies is obtained, the researcher
must perform a selection by assessing the studies’ actual relevance. Quality assess-
ment must be done over the selected studies. As the result of assessing the informa-
tion quality, according to the criteria defined in the protocol, a new set of studies is
generated.

Finally, the data synthesis provides researchers with the results of the systematic
review. The synthesis may be either quantitative or descriptive.

The last phase lies in the communication of the results. Usually the systematic re-
view is reported in at least two formats: In a technical report or in a section of a PhD
thesis as well as in a journal or conference paper.

130 J.M. Perez, F. Ruiz, and M. Piattini

Table 1. Studies Selection

Author, date Study name Source

Roser and Bauer (2005)
A Categorization of Collabora-
tive Business Process Modeling
Techniques

IEEE Digital Library

Zeng, et al. (2005)
Model-Driven Business Per-
formance Management

IEEE Digital Library

Pfadenhauer, et al (2005)
Comparison of Two Distinctive
Model Driven Web Service
Orchestration Proposals

IEEE Digital Library

Rosen (2004) SOA, BPM and MDA ACM Digital Library

Frankel (2005)
BPMI and OMG: The BPM
Merger

Business Process Trends

Harmon (2004)
The OMG's Model Driven
Architecture and BPM

Business Process Trends

Frankel (2003)
BPM and MDA: The Rise of
Model-Driven Enterprise Sys-
tems

Business Process Trends

Smith (2003)
BPM and MDA: Competitor,
Alternatives or Complementary

Business Process Trends

Kano, et al. (2005)
Analysis and simulation of
business solutions in a service-
oriented architecture

Wiley Digital Library

MEGA & Standard Bodies
(2004)

Business Process Modeling and
Standardization

bpmg.org

3 Review Results

This section presents the selected works in the searches performed in the digital li-
braries, journals and internet sites related to the issue in hand. Moreover, a classifica-
tion of studies is given. This has used aspects which are of relevance to the goal of the
review as a basis for this classification

3.1 Studies Selection

The first step was to search in the predefined information sources. Those sources are:
ACM digital library, IEEE digital library, Science Direct Digital Library, Business
Source Premier, Wiley InterScience, www.BPTrends.com, www.bpmg.org.

The result of this search was a first set, composed of 22 studies. With the aim of
tuning the set of studies, the selection criteria were applied. The studies had to contain
information about the application of model driven engineering or model driven archi-
tecture in business process management. The issue of the systematic review is MDE
for BPM, but because MDA is currently so widespread in the model engineering
world, MDA was included in the selection criteria.

As the result of the application of selection criteria, the new set of studies was
composed of 10 works (Table 1).

 MDE for BPM: A Systematic Review 131

3.2 Classification of Studies

The selected studies have been classified according to several aspects that have been
chosen to satisfy the goal of the systematic review (Table 2).

First of all, the author’s opinion about the issue of systematic review is the most
important aspect to take into account in classifying the studies. Another important
aspect is whether the study offers a proposal about the use of CIM, PIM and PSM
(MDA models) within the business process context. This means that the author sug-
gests a specific utilization of MDA models, pointing out the possible modeling stan-
dards used in each model. Finally, the different standards proposed by authors for
modeling business process are also aspects that are taken into account.

Table 2. Classification of the selected studies

Author, date
MDE
for
BPM

Propose
CIM,
PIM, &
PSM U

M
L

B
PM

L

B
PM

N

B
PD

M

B
PE

L

J2
EE

 Others

Roser and Bauer (2005) Yes Yes X X X X X ebXML, AIRIS,
WS-CDL

Zeng, et al. 2005 Yes No X X

Pfadenhauer, et al. (2005) Yes Partially X X X

Rosen (2004) Yes Yes X X X X

Frankel (2005) Yes No X X X X SBVR

Harmon (2004) Yes Yes X X X X X SBVR

Frankel (2003) Yes No X X X X

Smith (2003) No No X X

Kano, et al. (2005) Yes Yes X X X

MEGA & Standard Bodies
(2004) Yes No X X X X XPDL

4 Findings and Analysis

This systematic review goal is to identify studies that can provide an approach for the
application of the MDE paradigm to business process management. Note that from
here on in the text, MDA will be the modeling approach that will always be men-
tioned, whereas MDE will not. This is because MDA is the most widely-seen example
of MDE application, and because all the papers deal specifically with MDA, and not
with MDE in general.

132 J.M. Perez, F. Ruiz, and M. Piattini

The article “BPM and MDA: Competitors, Alternatives or Complementary” [7],
does not share the optimism of the rest of the authors. In Smith’s opinion, BPM and
MDA are very different. He declares that MDA must be used by software engineers
and that BPM must be used by business people. He also affirms that the latter are not
interested in a new approach for developing more software, but rather in a design-
driven architecture based on processes and on a business process management system
(BPMS) that interprets such designs, in the same way that RDBMS interprets a rela-
tional model. Although he does not deny the possibility that in the future the two
philosophies may work together, at the moment he advocates the separation of both
approaches.

The work “Model-Driven Business Performance Management” [8] proposes a
technical approach for developing a complete application related to the BPM context.
This study presents a relation between the two important concepts of this systematic
review, using a model-driven approach to build the solution. The technical approach
is based on the observation metamodel and its transformations. When the models are
transformed, the approach suggests compiling the operational aspects of the model
and finally developing a runtime engine that interprets the model and executes the
generated code.

The study ”Comparison of Two Distinctive Model Driven Web Service Orchestra-
tion Proposals” [9] focuses on the way to generate a set of web services that imple-
ment the organization business processes. By applying the MDA approach, and using
some of the business process standards, the final solution is generated. This document
mentions the BPDM standard as the MDA BPM connection.

The article “Analysis and simulation of business solutions in a service-oriented ar-
chitecture” [10], offers a four-layer model architecture, in which the first two layers,
when viewed together, are similar to the CIM layer in MDA from the business point
of view rather than from the software system point of view. The last two layers corre-
spond directly to the MDA PIM and PSM layers. By separating the independent plat-
form concerns of a solution from the specific platform concerns and their associated
code by means of MDA, the reuse of solution components is supported. Furthermore,
the system is more flexible and adaptable to the changes in business requirements.

The work “A Categorization of Collaborative Business Process Modeling Tech-
nique” [11], provides a proposal for applying MDA within the collaborative business
process framework. Collaborative business processes are performed among different
enterprises, which could have different business process development methodologies.
Therefore, the creation of a common framework in which the organizations could
communicate to each other in terms of business process would be ideal. The authors
have spoken about MDA as the common framework for integrating business process
from different organizations. They propose to create the business process CIMs, PIMs
and PSMs in every organization, by using their own model language for each kind of
model. These model languages must be MOF metamodels. Thus, transformations
among metamodels can be done. The communication among the enterprises in terms
of business process will be done by means of the common CIMs, PIMs and PSMs.
These common models are written by using a common metamodel (one for each kind
of model) and contain a view for the models of each organization from their CIMs,
PIMs and PSMs. Thus, the common framework is well-known for all the organiza-
tions.

 MDE for BPM: A Systematic Review 133

Fig. 2. Use of OMG BPDM [15]

The study “Business Process Modeling and Standardization” [12], is a review
concerning all of the standards existing around business process, from languages to
modeling notations. It provides a whole view of the state of standards (as it stood on
September 2004), as well as their coverage within the BPM context. Moreover, it
reports on the capacities of versions of new standards that are about to come out.

The study “SOA, BPM and MDA” [13] does not offer a specific proposal for us-
ing MDE within some business process management areas, but provides an abstract
vision about the role that both MDE and BPM play. The article points out how MDA
can help business process automation, reuse and maintenance.

The two works by Frankel selected in the systematic review, concerning MDA and
BPM, [2], [14], point to the use of MDA as the methodology that guides business
process design, implementation, maintenance and management. Frankel’s theory is
that BPM joined to MDA is stronger than BPM alone, and MDA together with BPM
is stronger than MDA alone. Moreover, he gives a wide classification of the different
business process standards that currently exist. He aims at the aligning of the business
process modeling notation (BPMN) with the OMG metamodel BPDM. This would
provide portability utility by means of the XMI format and the power of the MDA
transformations, in line with the well-known BPMN standard. Although Frankel is
optimistic about the application of MDA in BPM, he also warns us about the wide
gap that exists between the abstraction represented by a business process model and
the specific models that represent the implementation of the business process.

The study “The OMG's Model Driven Architecture and BPM” [15], has as its goal
the use of MDA within the BPM. Harmon puts BPDM at the centre of business proc-
ess modeling (Figure 2). The rest of business process modeling standards should be
transformed directly to BPDM, even BPMN. He proposes a way to use the different
kinds of MDA models (CIM, PIM and PSM) for business process design and imple-
mentation. Thus, CIM will be specified in terms of business process by using BPDM;
the business rules by means of business rules metamodel (BRM). These models are
used by business analysts. PIM are a transformation from previous CIM, specified in
a software system metamodel, for example UML. These models are used by software
architects. Finally, PSM are built by transforming PIM to the platform specific lan-
guage in which the business process will be implemented, for example the J2EE UML
Profile.

134 J.M. Perez, F. Ruiz, and M. Piattini

5 Conclusions and Future Work

The systematic review performed provides a complete view of the proposals and
opinions existing in the recent literature about MDE paradigm application in business
process management.

Most of the works found point to the use of model driven engineering as a valid
approach for business process management. There are proposals for the use of MDA
in the context of collaborative business process management, where the model driven
plays the role of integration standard and allows different organizations to cooperate
from a business process point of view. It is also suggested, on the other hand, that
MDA is the methodology that drives the organization business process design, im-
plementation, maintenance and management.

Although most authors are in favor of the use of MDE in business process man-
agement, there is some rejection of this idea, throwing into relief how far apart both
concepts are, and how difficult it is to obtain cooperation to achieve better results.

Business process modeling standards become the key issue for the MDA applica-
tion in the context of BPM. These standards must be metamodels, which are instances
of meta-metamodel MOF. OMG propose the business process definition metamodel
(BPDM) as the standard for business process modeling, which has no final version yet
[16]. BPDM is a semantic description of the logical relations among several elements
of any business process description. It is not a notation. Its advantage is that it is a
MOF metamodel. Thus, any other notation language, such as BPMN, can be trans-
formed to BPDM. As BPDM is a MOF metamodel, this can be transported via XMI
to any business process tool that knows such a metamodel. The companies only have
to define MDA transformations from the BPDM metamodel to executable languages
like J2EE or BPEL.

BPMN is the notation standard most frequently used to define business process at a
high level. So some authors are quite adamant in their assertions that the next version
of BPDM will take on the BPMN standard. Thus, any high level BPMN model will be
able to be shared via XMI and transformed to follow the MDA methodology.

In future research, we will monitor the evolution of BPDM and its convergence
with the BPMN standard. We will propose a QVT transformation from BPMN to
BPDM, as well as from BPDM to a web services metamodel. To do this, the model
management framework MOMENT will be used [17].

Acknowledgements

This work has been partially financed by the FAMOSO project (Ministerio de Indus-
tria, Turismo y Comercio, FIT-340000-2005-161), ENIGMAS project (Junta de
Comunidades de Castilla-La Mancha, PBI-05-058), ESFINGE project (Ministerio de
Educación y Ciencia, TIN2006-15175-C05-05), COMPETISOFT project (Programa
Iberoamericano de Ciencia y Tecnología para el Desarrollo, 506PI0287), including
the support of the “Fondo Europeo de Desarrollo Regional (FEDER)”, European
Union.

 MDE for BPM: A Systematic Review 135

References

1. Smith, H.: The emergence of Business Process Management. CSC’s Research Services
(2002)

2. Frankel, D.S.: BPM and MDA. The rise of model-driven enterprise systems. Business
Process Trends (2003)

3. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, OMG (2003)
4. Bézivin, J.: MDA: From hype to hope, and reality. In: UML 2003. 6th International Con-

ference. ATLAS Group (2003)
5. Kitchenham, B.: Procedures for performing systematic reviews. NICTA Joint Technical

Report (2004)
6. Travassos, G.H., Biolchini, J., Gomes, P., Cruz, A.C.: Systematic review in software engi-

neering. Technical Report (2005)
7. Smith, H.: BPM and MDA: Competitors, alternatives or complementary. Business Process

Trends (2003)
8. Zeng, L., Lei, H., Dikun, M., Chang, H., Bhaskaran, K.: Mode-driven business perform-

ance management. In: ICEBE 2005. Proceedings of the 2005 IEEE International Confer-
ence on e-Business Engineering. IEEE, Los Alamitos (2005)

9. Pfadenhauer, K., Dustdar, S., Kittl, B.: Comparision of two distinctive model driven web
service orchestration proposals. In: CECW 2005. Proceedings of the 2005 Seventh IEEE
International Conference on E-Commerce Technology Workshops. IEEE, Los Alamitos
(2005)

10. Kano, M., Koide, A., Liu, T., Ramachandran, B.: Analysis and simulation of business so-
lutions in a service oriented architecture. IBM Systems Journals 44(4) (2005)

11. Roser, S., Bauer, B.: A categorization of collaborative business process modeling tech-
niques. In: CECW 2005. Proceedings of the 2005 Seventh IEEE International Conference
on E-Commerce Technology Workshops. IEEE, Los Alamitos (2005)

12. MEGA & Standard Bodies, Business process modeling and standarization. Bpmg.org
(2004)

13. Rosen, M.: SOA, BPM and MDA. CTO Azora Technologies (2004)
14. Frankel, D.S.: BPMI and OMG: The BPM Merger. Business Process Trends (2005)
15. Harmon, P.: The OMG’s model driven architecture and BPM. Business Process Trends

(2004)
16. O.M.G.: Business Process Definition Metamodel, Request for Proposal, OMG document

(June 1, 2003), http://www.omg.org/docs/bei/03-01-06.pdf
17. Boronat, A., Carsí, J.A., Gómez, A., Ramos, I.: Utilización de Maude desde Eclipse Mod-

eling Framework para la gestión de modelos. Departament de Sistemes Informatics i Com-
putacio. Universitat Politécnica de Valencia (2005)

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 136–152, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exploring Feasibility of Software Defects Orthogonal
Classification

Davide Falessi and Giovanni Cantone

Univ. of Roma “Tor Vergata”, DISP, Via del Politecnico 1, Rome, Italy
falessi@ing.uniroma2.it, cantone@uniroma2.it

Abstract. Defect categorization is the basis of many works that relate to software
defect detection. The assumption is that different subjects assign the same category
to the same defect. Because this assumption was questioned, our following deci-
sion was to study the phenomenon, in the aim of providing empirical evidence. Be-
cause defects can be categorized by using different criteria, and the experience of
the involved professionals in using such a criterion could affect the results, our fur-
ther decisions were: (i) to focus on the IBM Orthogonal Defect Classification
(ODC); (ii) to involve professionals after having stabilized process and materials
with students. This paper is concerned with our basic experiment. We analyze a
benchmark including two thousand and more data that we achieved through
twenty-four segments of code, each segment seeded with one defect, and by one
hundred twelve sophomores, trained for six hours, and then assigned to classify
those defects in a controlled environment for three continual hours. The focus is on:
Discrepancy among categorizers, and orthogonality, affinity, effectiveness, and ef-
ficiency of categorizations. Results show: (i) training is necessary to achieve or-
thogonal and effective classifications, and obtain agreement between subjects, (ii)
efficiency is five minutes per defect classification in the average, (iii) there is affin-
ity between some categories.

Keywords: Software engineering, Experimental software engineering, Or-
thogonal Defect Classification, Defect class affinity, Fault detection, Effective-
ness, Efficiency.

1 Introduction

Defect classification plays an important role in software quality. In fact, software
quality is strictly related to the number and types of defects present in software arti-
facts and eventually in software code.

The analysis of defect data can help to better understand the quality of software
products and the related processes, and how they evolve.

An invalid defect categorization would obviously imply wrong data, which could
lead analysts to wrong conclusions, concerning the product, development process or
phase, methods, and/or tools.

For instance, in order to define the best mix of code testing and inspection tech-
niques for given application domain and development environment, it is crucial to
collect valid defect-category data [1], [3], [4].

 Exploring Feasibility of Software Defects Orthogonal Classification 137

1.1 Related Works

The Orthogonal Defect Classification (ODC) is a schema [12] that IBM proposed in
the aim of capturing semantics of software defects (see Section 1.3 for further details
concerning ODC). ODC was originally published on 1992; because in the mean time
the software world changed, the IBM provided to update ODC regularly. The classifi-
cation adopted in this work is ODC v5.11, i.e. the last version of ODC, to the best of
our knowledge. ODC is defined as a technology-independent (software process, pro-
gramming language, operative system, etc.) classification schema. This is based on
eight different kinds of attributes, each of them having its own categories.

Khaled El Emam and Isabella Wieczorek (1960), and Kennet Henningsson and
Claes Wohlin (2004) investigated ODC empirically by focusing on subjectivity of
defect classification. In order to evaluate the level of cohesion among classifications
that different subjects enacted, both studies used “Kappa statistics” [5], and worked
on their own variations of ODC. In particular, El Emam and Wieczorek involved
various combinations of three subjects who performed in the role of defect categoriz-
ers on an actual software artifact, during the development process; they hence col-
lected and eventually analyzed “real inspection data” [7]. Eight subjects, each having
at least a Master’s degree but with limited experience in defect classification, partici-
pated to the experiments conducted by Henningsson and Wohlin, where objects were
utilized that included thirty defects selected from a repository. Concerning results
from those studies, the former presents high level of cohesion with respect to stan-
dards utilized by medical studies, the latter shows that there might be subjectivity in
classification. [6] used the ODC as initial defect categorization framework and after-
wards faults were classified in a detailed manner according to the high-level con-
structs where the faults reside and their effects in the program. The analysis of field
data on more than five hundred real software faults shows a clear trend in fault distri-
bution across ODC classes. Moreover, results show that a smaller subset of specific
fault types is clearly dominant regarding fault occurrence.

1.2 Study Motivations and View

We can count a significant number of empirical works from many authors worldwide,
whose conclusions are based on categorization of software defects. A common as-
sumption of all those works (see Section 8 for few samples of them: [3], [4], [9], [10])
is that in large extent defects can be classified objectively, whatever the classification
model might be. In the absence of enough evidence for such an assumption, all those
empirical results could be questioned. Consequently, the basic question of this study
is whether software practitioners can uniformly categorize defects.

In this paper we focus on the ODC attribute “Defect Type” (DT), which role is to
catch the semantics of defects, that is the nature of the actual correction that was made
to remove a defect from a software code. DT categorization hence follows defect de-
tection, identification and fixing: in fact, the real nature of a defect can be understood
(and than suitably categorized) only after the code is fixed, in the ODC approach.

DT includes seven defect categories [12], [13]:
1. Assignment/Initialization: value(s) assigned incorrectly or not assigned at all.
2. Checking: errors caused by missing or incorrect validation of parameters or data

in conditional statements. It might be expected that a consequence of checking
for a value would require additional code such as a do while loop or branch.

138 D. Falessi and G. Cantone

3. Algorithm/Method: efficiency or correctness problems that affect the task and
can be fixed by re-implementing an algorithm or local data structure without the
need for requesting a design change; problems in the procedure, template, or
overloaded function that describes a service offered by an object.

4. Function/Class/Object: the defect should require a formal design change, as it
affects significantly capability, end-user interfaces, product interfaces, interface
with hardware architecture, or global data structure(s); defect occurred when im-
plementing the state and capabilities of a real or an abstract entity.

5. Interface/O-O Messages: communication problems between modules, compo-
nents, device drivers, objects or functions.

6. Relationship: problems related to associations among procedures, data structures
and objects.

7. Timing/Serialization: necessary serialization of shared resource was missing, the
wrong resource was serialized, or the wrong serialization technique was em-
ployed.

In the remaining, we present, analyze, and discuss a benchmark including two-
thousand and more data that we achieved through an experiment based on twenty-four
segments of code, each segment seeded with one defect, and one hundred twelve
sophomores, trained for six hours and then assigned to classify those defects in a con-
trolled environment for three continual hours. In particular, Section 2 presents the
experiment problem and goal definition. Section 3 shows the experiment planning and
operation. Section 4 and 5 present and discuss results. Some final remarks and further
intended works conclude the paper.

2 Goal and Experiment Hypotheses

The goal [3] of this paper is to analyze the (ODC)’s DT attribute from the point of view
of the researcher, in the context of an academic course on “OO thinking and program-
ming with Java” for sophomores, for the purpose of evaluating dependences of software
defect categorizations on: i) defect (d∈DD): ii) subjectivity of practitioners (s∈S); iii)
expertise in defect detection (X), and (iv) Programming language (PL) utilized to code
artifacts, by focusing on: a) Effectiveness (E), i.e. in what extent a defect is associated to
its most frequent categorization (MFC); b) Efficiency (Ec), i.e. the number of (MFC)s
per time unit; c) Orthogonality (O), i.e. in what extent a defect is assigned to just one
category; d) Affinity (A), i.e. in what extent a defect category looks like other categories,
and e) Discrepancy (D), i.e. in what extent subjects assign a defect different categories
(see Sections 3 for quantitative definitions of all those variables).

Based on that goal, the hypotheses of our work concern the impact of expertise
(hX), defect category (hC), and programming language (hL) on orthogonality (hO), ef-
fectiveness (hE), and discrepancy (hD).

The null (h0) and alternative (h1) hypotheses for expertise versus orthogonality
(resp. effectiveness, and discrepancy) are:

– hXO0: Expertise does not significantly impact on orthogonality (resp. hXE0, and
hXD0).

– hXO1: Expertise impacts significantly on orthogonality (resp. hXE1, and hXD1).

 Exploring Feasibility of Software Defects Orthogonal Classification 139

Hypotheses concerning programming language (hLO0, hLO1, hLE0, hLE1, hLD0, hLD1),
and defect category (hCO0, hCO1, hCE0, hCE1, hCD0, hCD1) have similar formulations. In
the remaining, while we evaluate the impact of defect category, expertise, and pro-
gramming language on outcomes, our reasoning mainly focuses on expertise. In fact,
in our expectation, in case of significant dependence of defect categorizations from
the categorizers’ subjectivity, expertise should play the most important role and be-
have as the main discriminating factor; consequently, our planning and training em-
phasis was in providing variable expertise.

3 Experiment Planning and Operation

Whoever the participant subject, three items characterize our elementary experiment:
a defect, as seeded and fixed in a program segment, the programming language of that
segment, and dissimilarity of that defect.

In order to average on differences among participant subjects, our planning deci-
sions was to utilize subjects with the same level of experience; in particular: i) one
hundred or more subjects from the same academic class, ii) subjects showing the
same OOP class frequency record, iii) subjects who would be attending all the train-
ing sessions. Moreover, in order to manage the impact of learning effect on results,
we kept further planning decisions, which also helped to prevent exchange of infor-
mation among participant subjects: iv) to arrange four master files, where experiment
artifacts are located in different order, v) to assign subjects seats randomly, and give
neighbors copies of different master files, and vii) to ask subjects to handle artifacts in
sequence, staring from the first artifact their assigned.

We hence developed and saved into repository defected artifacts. An artifact con-
sists in a less than twenty ELOC segment of code, plus comments to ensure easy and
valid understanding; one defect is seeded per code segment, and fixed through spe-
cific comments. Let us note that while we used our understanding of DT ODC to gen-
erate defected artifacts, we no further utilize such understanding in the remaining of
this study, where categorizations are utilized as enacted by subjects.

In parallel with repository construction, we called for participation, and trained
subjects through three two-hour lectures, which presented the role and importance of
defect categorization, defined categories of the ODC DT attribute, and explained ex-
tensively two or more exemplar cases for each defect category. Subsequently, we
evaluated in Low (L), Average (A), and High (H) the dissimilarity between defects in
the experiment artifacts and defects in the examples given for training (see Expertise
in Section 3.1.4 for further details). Finally, we ruled the random selection of experi-
ment artifacts from the repository, as in the following: (i) Get as many C++ as Java
coded artifacts; (ii) Get two or more artifacts for each defect category; (iii) Get 20%
of artifacts for each value of Dissimilarity, and remaining (40%) at random.

3.1 Independent Variables: Parameters, Blocking Variables and Factors

Subjects. As already mentioned, one hundred twelve sophomores participated to the
experiment, who were attending the course of Object-Oriented Programming, their
fourth CS course at least. All of them had attended all the training lectures and, in

140 D. Falessi and G. Cantone

term of experience, they can be considered as novice programmers. Subjects’ partici-
pation was part of a course test; they worked individually in the same 250 seats room,
in the continual presence of two or more observers; communication among subjects
was not allowed. Other one hundred subjects, who had not fully attended the training
or the OOP course, were located in an adjacent room: their data will be no further
considered in the present paper.

Objects. Experiment artifacts, twelve C++ coded and twelve Java coded, were as-
signed to all subjects, each artifact seeded by one defect. All quadruples of neighbor
subjects handled the same artifacts but in different order.

Experiment Duration. Subjects had up to three hours assigned to enact their task.
They were allowed to quit the experiment any time, after the start and before the for-
mal end.

Factors and Treatments. Factors of the basic experiment and their levels are:
– Programming Language (PL), levelled at C++ and Java, respectively.
– Defect Category (Ctg). Six defect categories are utilized, i.e. all the DT ODC less

Timing/Serialization: in fact, subjects had not yet been exposed to concurrent pro-
gramming concepts, constructs, and mechanisms, when they participated to the
experiment.

– Expertise (X). It is analogous to Dissimilarity but scale is reversed; it hence re-
lates to quantity of examples given per defect during training. In fact, for each de-
fect type, we set artificially the subjects expertise by dosing the explanation time,
and the numbers of examples given per defect. (0, 1, 2) are the values of the ordi-
nal scale we use to measure the subjects expertise, where: 0 means that training
did not include examples showing that specific instance of the defect category
(hence, the defect shows low level of similarity with the explained defects, and its
Dissimilarity measure is H); 1 means that training exposed subjects just one time
to that specific instance of the defect category (Dissimilarity measures A); 2,
means that subjects trained with two or more instances concerning that specific
defect category (the defect shows high similarity with the explained ones, and its
Dissimilarity measure is L). Concerning this point, let us finally note that, because
subjects had already attended two CS courses in C++ and were attending a Java
course, trainers gave more emphasis to defected artifacts coded in the latter.

3.2 Dependent Variables

We directly measured:
– Completion Time: Actual task duration per subject (duration of all the elementary

experiments assigned to the same subject).
– Categorization: ODC per elementary experiment and subject. A subject, whether

sure about his understanding, assigns a defect just one category, else zero or two
categories.

Based on such direct measures, we derive the variables described in the followings,
which characterize the DT attributes of the OD Classification. Let us note that meas-
ures in the following are given to each specific defect, and then applied in the same
way in each defect category, each programming language, and so on..

 Exploring Feasibility of Software Defects Orthogonal Classification 141

– Effectiveness (E): percentage of the most frequent categorization with respect to
the universe of categorizations given by subjects for this defect.

– Efficiency (Ec): how many (MFC)s occur per time unit, in the average, for this
defect. Because of the experiment infrastructure that we choose (paper supports
for data collection; data registration enacted by subjects), our decision was to col-
lect the task Completion time only, rather than the time duration of each elemen-
tary experiment. Consequently, data from the basic experiment are not enough to
investigate efficiency in deep.

– Orthogonality (O): what percentage of subjects assigned this defect just one
category (rather than zero or two).

– Discrepancy (D): this does measure the average distance in percentage related to
the entire population for the same categorization, and is a variant of the Agree-
ment’s [8], [7] one complement. In other word, discrepancy is the average prob-
ability that a given categorization is different from those given by other subjects
for the same defect.

– Affinity (A): this expresses a relationship of a category with respect to one more
category, and is a variant of the Confusion’s [8] one complement. Given two cate-
gories, the source category CS and the destination category CD, let us take in con-
sideration defects, which MFC is CS. The affinity of CS with respect to CD,
A_WRT(CS,CD), measures the percentage of CS or CD categorizations given for
those defects. Formally:

– ∀d∈DD(Exp): MFC(d) = CS, ∃A_WRT∈ [0..100]: (100*p(d) ∈ {CS,
CD}=A_WRT); (1)

where: d is any of the defect set DD in the experiment Exp, and p is the probability
function averaged on all instances of the argument defect. A_WRT is not commuta-
tive (sometimes A_WRT(C1,C2) ≠ A_WRT(C1, C2)), and its reflexive closure,
A_WRT(C,C), is the Effectiveness with respect to category C.

The affinity between CS and CD, A_Btw(CS, CD), is then defined as:

∀d ∈ DD(Exp): MFC(d) ∈ {CS, CD}, ∃ A_Btw ∈ [0..100]: (100*p(d) ∈ {CS,
CD} = A_Btw); (2)

Note that ∀(CS, CD), A_Btw(CS,CD) = A_Btw(CD, CS), i.e. A_Btw is commuta-
tive:.

Definitions above can be extended to three or more categories.

4 Results and Data Analysis

At experiment conduction time, subjects registered more than two thousand six hun-
dred data fields, which we eventually deposited in a database. Two subjects provided
exorbitantly distant data from the most frequent ones; data analysis identified those
data as outliers, and consequently we excluded them form further analysis.

In this study all categorizations given by subjects, are evaluated, null ones in-
cluded: in our evaluation, null categorizations candidate IBM DT definitions for fur-
ther clarification, or our training for improvement.

142 D. Falessi and G. Cantone

4.1 Descriptive Statistics

Let us consider now orderly relationships between each response variable and factors.

Effectiveness. We want to describe the evolution of the most frequent categorizations
as a whole and versus expertise, programming languages, and defect categories in-
volved, and eventually with respect to the task completion time.

Fig. 1 shows subjects given categorizations, as averaged on the whole available
data. Concerning the abscissa, “0” stands for not categorized defects (null); “1_MFC”
(resp. “1_NMFC”) denotes that the subject assigned this defect just the most frequent
categorization (resp. one category, but different from the MFC); “Others” stands for
assignment of two categories to this defect. Effectiveness (see MFC in Fig. 1) is 0.69,
and variance is 8.

Fig. 2 and Fig. 3 relate effectiveness with expertise and specific defects, respec-
tively.

Table 1 shows effectiveness versus ODC categories, and related variances. Table 2
relates effectiveness to the programming language of the defected segments.

Fig. 4 shows the evolution of effectiveness in time.

Efficiency. Fig. 5 presents efficiency with respect to completion time. Table 3 shows
statistical summary for efficiency.

Orthogonality. Fig. 6 and Fig. 7 relate orthogonality with expertise and specific de-
fects, respectively. Table 4 and Table 5 present orthogonality versus ODC categories,
and programming language, respectively. Table 6 shows statistical summary for Or-
thogonality, and Fig. 8 presents the evolution of orthogonality in time.

Discrepancy. Table 7 shows statistical summary for discrepancy. In the remaining,
this Section presents discrepancy with respect to ODC categories (Table 8), pro-
gramming languages (Table 9), expertise (Fig. 9), and seeded defects (Fig. 10), re-
spectively.

Mean Ef f ectiveness = 69% Var iance=8

0

20

40

60

80

100

1_MFC 1_NMFC Null Ot hers

Cat egor i z at i ons

Fig. 1. Categorizations and Effectiveness (with respect to the whole data collected)

 Exploring Feasibility of Software Defects Orthogonal Classification 143

40

50

60

70

80

90

100

0 1 2

Expertise

E
ff

ec
ti

ve
n

es
s

%

Fig. 2. Effectiveness versus Expertise

0 20 40 60 80 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Defect ID

Effectiveness (%)

Fig. 3. Effectiveness per Defect

Table 1. Effectiveness versus ODC Categories

 Category
Effectiveness

1 2 3 4 5 6

Average (%) 77 83 48 75 54 82
Variance 204 156 18 470 237 151

Table 2. Effectiveness versus Programming Language

 Language
Effectiveness

Java C++

Average (%) 61 78
Variance 402 248

144 D. Falessi and G. Cantone

0

4

8

12

16

20

24

3500 4500 5500 6500 7500 8500 9500 10500 11500

Time (sec.)

E
ff

ec
ti

ve
n

es
s

Fig. 4. Effectiveness in time

0

4

8

12

16

20

24

3500 4500 5500 6500 7500 8500 9500 10500 11500

Time (sec.)

E
ff

ic
en

cy

Fig. 5. Efficiency in time

Table 3. Statistical summary for efficiency

Efficiency
Average

(MFC/h) 9

Variance 7,31

94

95

96

97

98

99

100

0 1 2

E xper t i se

Fig. 6. Orthogonality versus Expertise

 Exploring Feasibility of Software Defects Orthogonal Classification 145

90 92 94 96 98 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Defect ID

Orthogonality (%)

Fig. 7. Orthogonality per defect

Table 4. Orthogonality versus ODC categories

 Category
Orthogonality

1 2 3 4 5 6

Average (%) 98 97 94 98 95 98
Variance 4 5 7 4 3 2

Table 5. Orthogonality versus programming language

 Language
Orthogonality

Java C++

Average (%) 96 97
Variance 6 7

Table 6. Statistical summary for orthogonality

Orthogonality

Average (%) 97

Variance 2

146 D. Falessi and G. Cantone

0

4

8

12

16

20

24

3500 4500 5500 6500 7500 8500 9500 10500 11500

Time (sec.)

O
rt

h
o

g
o

n
al

it
y

Fig. 8. Orthogonality in time

Table 7. Statistical summary for Discrepancy

Discrepancy
Average
(%) 43

Variance 1010

Table 8. Discrepancy versus ODC Categories

 Category
Discrepancy

1 2 3 4 5 6

Average (%) 39 28 65 34 60 29
Variance 44 379 13 591 171 326

Table 9. Discrepancy versus Programming Language

 Language
Discrepancy

Java C++

Average (%) 50 50
Variance 453 478

0

10

20

30

40

50

60

70

0 1 2

E xper t i se

Fig. 9. Discrepancy versus Expertise

 Exploring Feasibility of Software Defects Orthogonal Classification 147

0 20 40 60 80 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Defect ID

Disagreement (%)

Fig. 10. Discrepancy per defect

Affinity. Based on the average effectiveness shown above (E=0.69), the number of
categorizations that differ from their (MFC)s is around 818.

While it is not possible to include all those categorizations in this paper, we can de-
scribe their tendencies, based on definitions given for Affinity in Section 3.2 above:
according to expressions (1), A_WRT(6, 5)= 90; A_WRT(2, 3)= 95; according to
expression (2), A_Btw(1, 3, 5)= 90.

In words, when the MFC is 6 (Relationship) then 90% of categorizations provided
by subjects are 6 (Relationship) or 5 (Interface/ OO Messages).

Moreover, when the MFC is 2 (Checking) then 95% of categorizations provided by
subjects are 2 (Checking) or 3 (Algorithm/Method).

Furthermore, when MFC is 1 (Assignment/ Initialization), 3, or 5 then 90% of
categorizations provided by subjects are 1, 3, or 5.

Finally, let us spread on data “Others” in Fig. 1, which concern affinity. Columns
Ctg1 and Ctg2 in Table 10 present the alternative categorizations that doubtful sub-
jects assigned to defects; the Ocs columns show the occurrences of those double cate-
gorizations.

Table 10. Defect’s double categorizations (as provided by doubtful subjects)

Ctg1 Ctg2 Ocs Ctg1 Ctg2 Ocs
1 3 3 3 6 1
1 5 2 4 5 1
2 3 3 4 6 2
3 4 2 5 6 1
3 5 2 Others 0

4.2 Hypothesis Testing

In order to test hypotheses concerning expertise, we separate cases where the involved
expertise is null (0) from remaining ones (expertise measures 1 or 2), so having the
seeded defects partitioned in two groups, GX=0, and GX≠0, respectively.

Testing hXO0. Expertise does Insignificantly Impact on Orthogonality: O(GX=0) ≅
O(GX≠0). The number of subjects, who assigned one category to GX=0 defects, are:

148 D. Falessi and G. Cantone

(100, 101, 103, 104, 104, 105, 105, 105, 106, 106, 107, 108), respectively; those for
GX≠0 are: (103, 106, 107, 108, 109, 109, 109, 109, 110, 110, 110, 110). Fig. 11 shows
the Box-and-Whisker plots for such series of data. Since the latter cannot fit under
normal curve at 99% of confidence level (in fact, its lowest P-value from Shapiro-
Wilks test is 0.0051, which is less than 0.01), we applied the Mann-Whitney (Wil-
coxon) W test to compare medians. Since the W test’s P-value is 0.000919, which is
less than 0.05, there is a statistically significant difference between the medians at the
95.0% confidence level. Consequently, we can reject the null hypothesis hXO0 at 95%
of significance level. In other words, expertise significantly impacts on orthogonality
of defect categorizations.

Orthogonality vs. Expertise

100 102 104 106 108 110

O

Others

Fig. 11. Orthogonal classifications versus expertise

Testing hXE0. Expertise does Insignificantly Impact on Effectiveness: E(GX=0) ≅
E(GX≠0). The effectiveness values for categorizing GX=0 defects are (41, 41, 45, 46,
52, 54, 59, 65, 71, 75, 79, 81), respectively; those for GX≠0 are (74, 77, 79, 81, 83, 98,
100, 104, 105, 107, 108, 109). Fig. 12 shows the Box-and-Whisker plots for such se-
ries of data. Since the latter cannot fit under normal curve at 95% of confidence level
(in fact, its lowest P-value from Shapiro-Wilks test is 0.037, which is less than 0.05),
we applied the W test. Since the W test’s P-value is 0.000194, which is less than
0.05, there is a statistically significant difference between the medians at the 95.0%
confidence level. Consequently, we can reject the null hypothesis hXE0 at 95% of sig-
nificance level. In other words, expertise significantly impacts on effectiveness of
defect categorizations.

Effectiveness vs. Expertise

41 61 81 101 121

O

Others

Fig. 12. Effectiveness versus expertise

 Exploring Feasibility of Software Defects Orthogonal Classification 149

Testing hXD0. Expertise does Insignificantly Impact on Discrepancy: D(GX=0) ≅
D(GX≠0). The discrepancy values related to categorizations of GX=0 defects are (42,
44, 49, 52, 58, 59, 63, 68, 68, 70, 71, 74), respectively; those for GX≠0 are (2, 4, 5, 9,
10, 17, 19, 40, 41, 42, 46, 51). Fig. 13 shows the Box-and-Whisker plots for such
series of data. Since the latter cannot fit under normal curve (in fact, its lowest P-
value from Chi-Square test is 0.022, which is less than 0.05), we applied the W test.
Since the W test’s P-value is 0.000137, which is less than 0.05, there is a statistically
significant difference between the medians at the 95.0% confidence level. Conse-
quently, we can reject the null hypothesis hXD0 at 95% of significance level. In other
words, expertise significantly impacts on discrepancy between defect categorizations.

Discrepancy vs. Expertise

0 20 40 60 80

O

Others

Fig. 13. Level of Discrepancy, treated by experience

5 Discussion

5.1 Experiment Results

Effectiveness. Based on Fig. 1, the percentage of most frequent categorizations is in
average 69%. This seems quite a small value for effectiveness, which also means that
there seems to be high subjectivity in defect categorization when trained/untrained
novice programmers are involved. Again Fig. 1 shows that those programmers per-
form quite dissimilarly, since variance (8) is very high - one third of the seeded de-
fects (24) - as also shown by Fig. 3 and Table 1.

Fig. 1 also shows that single non-MFC classifications (1_NMFC) are in number
ten times greater than the doubtful ones (Null + Others). In our understanding, this
means that novices seem unconscious of consequences that their limited knowledge of
ODC DT could have. Another view is that IBM should improve the presentation of
ODC DT, in order to help practitioners to distinguish among categories more easily.

Based on Fig. 2, it seems that effectiveness is strongly related to expertise. In fact,
effectiveness grows from 54% up to 89% as the given training grows. Based on that
slope, the trend for effectiveness is 100%, which expert professionals should be able
to approach. The impact of expertise on results explains, in our understanding, the
variance previously observed with aggregated data. This also asserts that data in Ta-
ble 1 should not be utilized to evaluate the impact of defect category on effectiveness,
and, similarly, data in Table 2 should not be used to evaluate the impact of program-
ming languages on effectiveness.

150 D. Falessi and G. Cantone

Finally, based on Figure 4, effectiveness seems independent from the completion
time, when this is limited to 3 hours.

Efficiency. The amount of time a subject employed to enact a categorization is
around 5 minutes in average.

Based on date in Table 3, the mean time for an MFC categorization is 6.66 minutes
(9 MFC/hour), and variance is 7.3 MFC/hour.

Since variance is similar to the average, it seems that efficiency is highly subjective
with novice programmers. Let us recall that it was not possible to collect the duration
time during the basic experiment; consequently, we cannot investigate efficiency
more deeply.

Orthogonality. Based on Table 6, which data are again not yet disaggregated with
respect to expertise, orthogonality is 97%, while variance is 2. This expresses that, in
the average, programmers commonly percept ODC with respect, and tend to provide
just one classification per defect, whatever is their expertise. However, taking in con-
sideration data disaggregated by expertise (Fig. 6), with novices, orthogonality grows
from 95% up to 99.3% as expertise grows.

Based on Table 5, aggregated data show no difference of C++ and Java versus or-
thogonality.

Finally, based on Fig. 8, orthogonality seems independent from the completion
time, when this is limited to 3 hours.

Discrepancy. Subjects had to select a category out of seven (including null). In the-
ory, the maximum value for discrepancy is 86%, which occurs when all selections are
equally probable; it is the probability that six categories are selected out seven (less
scale factor 100). The minimum of discrepancy is 0%, which occurs in case of com-
plete agreement between subjects for each categorization. Table 7 shows 43% dis-
crepancy (and 1010 variance!), as registered in average for our basic experiment,
again with respect to data not yet disaggregated by expertise. That value is exactly the
mean between the discrepancy’s minimum and maximum theoretic values; as a result,
ODC seems to be quite dependent from the categorizers’ subjectivity, when
trained/untrained novices are involved.

Based on Fig. 9, wich relates to data disaggregated by expertise, it seems that dis-
crepancy is strongly related to expertise. In fact, discrepancy decreases from 60% up
to 17% as the given training grows. Based on that slope, the trend for discrepancy is
the theoretic minimum (0%), which expert professionals should be able to approach.
The impact of expertise on results explains, in our understanding, the very large value
previously observed for variance, when aggregated data were considered.

Based on Table 9, aggregated data show no difference of C++ and Java versus dis-
crepancy. Again, discrepancy seems independent from the completion time, when this
is limited to 3 hours.

Affinity. Based on data elaboration that we presented above (see Section 0), it seems
that categories “Assignment/ Initialization”, “Algorithm/Method”, and “Interface/OO
Message” are one each other strongly affine. Moreover, category “Interface/OO Mes-
sage” is frequently provided in place of “Relationship”, and the same for “Algo-
rithm/Method” with respect to “Checking”. This, in our understanding, calls for train-
ing improvement by emphasizing on dissimilarities among those categories.

 Exploring Feasibility of Software Defects Orthogonal Classification 151

5.2 Threats to Validity

This empirical study has a number of limitations that should be taken into account
when interpreting its results.

Concerning the internal validity [11] (i.e. the degree to which conclusions can be
drawn about the causal relationship between independent variables and dependent
variables), it should be noted that we utilized a very limited number of defect sam-
ples: 12 per language, hence two defects per category. Moreover, while the task com-
pletion time assigned was quite small, and subjects were continually in control of ob-
servers during the conduction of the experiment, we cannot guaranty absence of inter-
actions between participants; in fact, these were student, who we partially graded for
their performance; in the experiment cultural context, a student is appreciated, who
passes his solutions to colleagues. Furthermore, our training emphasized on Java lan-
guage, and the real experience and expertise of subjects with C++ was not in control.

Another limitation of this study is related to the external validity [11], i.e. the de-
gree to which the results from this study can be generalized. It cannot be assumed a
priori that the results of a study generalize beyond the specific environment and con-
text in which it was conducted. In fact, subjects involved with the basic experiment
are sophomores in OO Programming, who should not be considered as novice profes-
sional programmers. Moreover, the experiment software artifacts that we utilized in
the basic experiment are small segments of code, which should not be taken to repre-
sent real software. Finally, we utilized paper supports both for experiment artifacts
and forms, while realism asked for electronic-supported code, and electronic-network-
supported form distribution, and data collection.

6 Conclusions and Future Works

This paper has presented an empirical investigation on the (IBM)’s ODC-DT attribute
for software defect categorization. Foci of the investigation have been the classifica-
tion effectiveness, efficiency, orthogonality, discrepancy, and affinity with respect to
practitioners’ subjectivity (110 students performing in the role of experiment sub-
jects), defects individuality (6 DT categories of seeded defects), and software arti-
facts’ coding language (Java and C++). Results shown include averages for time for
defect categorization (≅5 minutes), effectiveness (69%), and orthogonality (97%).
Results also show that subject’s expertise seems to impact very significantly on all the
results, and subjects with enough expertise should be able to easily approach the theo-
retic best value for effectiveness, as for orthogonality and discrepancy. Our conse-
quent expectation is that there should be objectivity in defect categorization, whether
enacted by software practitioners. However, such an expectation still needs empirical
evidence. Further results show that, when time spent in categorizing defects lasts be-
tween 1 and 3 hours, the effectiveness, orthogonality, and discrepancy are not affected
by the time duration of the classification section. Moreover, results show that the pro-
gramming language of coded artifacts, and the defect nature seem to impact insignifi-
cantly on effectiveness, orthogonality, and discrepancy. Finally, our results show that
there are some categories that tend to confuse subjects; this, in our understanding,
calls for improving definitions of those ODC DT categories, as actually given by
IBM. Namely, those categories are “Interface/OO Message” and “Relationships”.

152 D. Falessi and G. Cantone

Further confusing categories are “Assignment/Initialization” and “Algo-
rithm/Method” on one side, and “Algorithm/Method” and “Checking” on the other
side, which confirm previous results [8].

Our plan for the future is first to extend the size of our defect repository, place the
material in electronic format, and contact IBM experts in the aim of receiving their
categorizations of our defect samples (to use as the reference “correct” categoriza-
tions), and then to proceed with replicating the experiment with professionals both in
a controlled environment, and through the Web. This should also provide the precise
timing of each categorization, and help to investigate efficiency in deep.

References

1. Abdelnabi, Z., Cantone, G., Ciolkowski, M., Rombach, D.: Comparing Code Reading
Techniques Applied to Object-oriented Software Frameworks with regard to Effectiveness
and Defect Detection Rate. In: Proceedings of the 2004 International Symposium on
Empirical Software Engineering, Redondo Beach (CA) (2004)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. In: Marciniak,
J.J. (ed.) Encyclopaedia of Software Engineering, vol. 1, pp. 528–532. John Wiley & Sons,
Chichester (1994)

3. Basili, V.R., Selby, R.: Comparing the Effectiveness of Software Testing Strategies. In:
IEEE Transactions on Software Engineering, December 1987, pp. 1278–1296. CS Press
(1987)

4. Cantone, G., Abdulnabi, Z.A., Lomartire, A., Calavaro, G.: Effectiveness of Code Reading
and Functional Testing with Event-Driven Object-Oriented Software. In: Conradi, R.,
Wang, A.I. (eds.) ESERNET 2001. LNCS, vol. 2765, pp. 166–193. Springer, Heidelberg
(2003)

5. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement 20, 37–46 (1960)

6. Durães, J., Madeira, H.: Definition of Software Fault Emulation Operators: a Field Data Study.
In: Proc. of 2003 International Conference on Dependable Systems and Networks (2003)

7. El Emam, K., Wieczorek, I.: The Repeatability of Code Defect Classifications. In:
Proceedings of International Symposium on Software Reliability Engineering, pp. 322–
333 (1998)

8. Henningsson, K., Wohlin, C.: Assuring Fault Classification Agreement – An Empirical
Evaluation. In: Proceedings of the 2004 International Symposium on Empirical Software
Engineering (2004)

9. Juristo, N., Vegas, S.: Functional Testing, Structural Testing, and Code Reading: What
Fault Type Do They Each Detect? In: Conradi, R., Wang, A.I. (eds.) ESERNET 2001.
LNCS, vol. 2765, pp. 208–232. Springer, Heidelberg (2003)

10. Myers, G.J.: A Controlled Experiment in Program Testing and Code
Walkthroughs/Reviews. Communications of ACM 21(9), 760–768 (1978)

11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. The International Series in
Software Engineering (2000)

12. IBM a, Details of ODC v 5.11, (last access May 02, 2006),
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

13. IBM b, ODC Frequently Asked Questions, (last access May 02, 2006),
http://www.research.ibm.com/softeng/ODC/FAQ.HTM

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 153–164, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Mapping Medical Device Standards Against the CMMI
for Configuration Management

Fergal McCaffery1, Rory V O’Connor2, and Gerry Coleman3

1 Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland
Fergal.McCaffery@dkit.ie

2 School of Computing, Dublin City University, Dublin, Ireland
roconnor@computing.dcu.ie

3 Department of Computing, Dundalk Institute of Technology, Dundalk, Ireland
gerry.coleman@dkit.ie

Abstract. This paper outlines the development of a Configuration Management
model for the MEDical device software industry (CMMED). The paper details
how medical device regulations associated with Configuration Management
(CM) may be satisfied by adopting less than half of the practices from the CM
process area of the Capability Maturity Model Integration (CMMI). It also in-
vestigates how the CMMI CM process area may be extended with additional
practices that are outside the remit of the CMMI, but are required in order to
satisfy medical device regulatory guidelines.

Keywords: Configuration Management, Medical device, Software Process Im-
provement, CMMI.

1 Introduction

Software is becoming an increasingly important aspect of medical devices and medi-
cal device regulation. Medical devices can only be marketed if compliance and ap-
proval from the appropriate regulatory bodies of the Food and Drug Administration
[8], and the European Commission under its Medical Device Directives [6] is
achieved. Medical device companies must produce a design history file detailing the
software components and processes undertaken in the development of their medical
devices. Due to the safety-critical nature of medical device software it is important
that a highly efficient CM process is in place within medical device companies.

CM is the discipline of coordinating software development and controlling the
change and evolution of software products and components [13]. It involves the
‘unique identification, controlled storage, change control, and status reporting of se-
lected intermediate work products, product components and products during the life
of a system’ [17]. Such CM procedures are needed to manage the vast number of
elements (source code, documentation, change requests, etc) that are created and up-
dated over the lifetime of a software system.

For many software companies, who report CM problems, CM is the first major proc-
ess weakness that they are required to address. For example, as the company expands, it
must fulfil the task of acquiring new customers whilst satisfying the demands of existing

154 F. McCaffery, R.V. O’Connor, and G. Coleman

customers. Often these demands include product customisations which many young
companies, lacking reliable revenue streams, do not feel they can ignore. In many situa-
tions this results in companies having to support multiple code bases and product ver-
sions with very limited resources. Ultimately, a detailed CM process is the only way this
problem can be solved.

A study of a small Danish software firm shows how it was forced to review the
number of products it developed, and the amount of work it accepted, because of CM
difficulties [2]. But CM is equally important in large software companies as a case
study of Netscape and Microsoft’s development practices shows [5]. Therefore, in a
software company or department without CM to control product development, there is
no process to assess and no basis for measurement [7]. To succeed in this area Hum-
phrey [14] proposes that a CM plan be developed in conjunction with the establishment
of a configuration control board to manage changes to all of the baseline configuration
items and to ensure that configuration control procedures are followed.

A number of ‘best practice’ software process improvement (SPI) models such as
ISO/IEC 15504 (also known as ‘SPICE’) and Capability Maturity Model Integration
(CMMI) have been designed to help companies manage their software development
activity. For example, CMMI is an SPI improvement model which specifies recom-
mended practices in specific process areas – including CM - that have been shown to
enhance software development and maintenance capability [4].

This paper will investigate how thorough current medical device regulations are in
relation to specifying what CM practices medical device companies should adopt
when developing software. This will be achieved through comparing current medical
device regulations and guidelines for CM against the formally documented software
engineering ‘best practices’ of the CMMI for the CM process area.

2 Medical Device Industry

Medical device companies have to adhere to medical device regulations in relation to
CM. Therefore the main area of concern for medical device companies in relation to
CM is to ensure that the checklist of CM elements required by Food and Drug Ad-
ministration (FDA) are in place rather than trying to improve their overall CM prac-
tices. GAMP [12] details CM practices that medical device companies may adopt in
order to comply with medical device regulations, however no documentation exists
within the medical device domain in relation to how such practices could be improved
by incorporating practices from formal software engineering SPI models for CM.

However, if we investigate other regulated industries such as the automotive and
space industries we realise that these domains are not content with satisfying regula-
tory standards, but have proactively developed SPI models specifically for their do-
main so that they may continuously improve the development of their information
systems to achieve higher levels of safety, greater efficiency, and a faster time to
market, whilst seamlessly satisfying regulatory quality requirements.

The major process improvement frameworks that currently exist, namely ISO/IEC
15504 and CMMI, do not address the regulatory requirements of either the medical de-
vice, automotive or space industries. Therefore, a new SPI model [1] was developed spe-
cifically for the automotive industry, this model was based upon ISO/IEC15504 [15] and
is referred to as ‘Automotive SPICE’. Likewise, a new ISO/IEC15504 based SPI model

Mapping Medical Device Standards Against the CMMI for Configuration Management 155

was developed specifically for the space industry, this model is known as SPiCE for
SPACE [3]. Both of these models contain reference and assessment information in rela-
tion to how companies may improve their configuration management practices within
their domain.

This paper will not address the issue of developing an entire SPI model for the
medical device industry ([19] for full discussion), but shall instead focus upon the
individual process area of CM. This work addresses an opportunity to integrate
the regulatory issues and SPI mechanisms to achieve improvements that are critical to
the CM of software for medical devices.

3 CMMED Development

The CMMED (Configuration Management model for the MEDical device software in-
dustry) was initiated by work that one of the authors performed whilst performing re-
search for the Centre for Software Process Technologies at the University of Ulster,
Northern Ireland. This work is now progressing with Lero – the Irish Software Engineer-
ing Research Centre. The initial research work was assisted by the involvement of a
steering group with a pilot of 5 medical device companies and a notified standards body
(all based in Northern Ireland). Each of the five companies expressed a desire to have
access to a CM model that would incorporate software process improvement practices
and could fulfil the relevant medical device regulatory requirements. However, this work
is now being extended to include medical device companies in the Republic of Ireland.

The CMMED may be defined as a set of activities that if performed at a base level
will satisfy the CM guidelines specified in the medical device standards. However,
CMMED also enables medical device companies to follow a SPI path to achieving
CMMI certification. The CMMED will be flexible in that relevant elements of the
model may be adopted as required to provide the most significant benefit to the busi-
ness. The model is based on the CMMI, however another model is also being devel-
oped that is based upon ISO/IEC15504. The regulations used to extend the CMMI
framework will be those of the FDA and the ANSI/AAMI SW68:2001 (SW68) stan-
dard (Medical device software – Software life cycle processes).

The CMMED will provide a means of assessing the software engineering capabil-
ity for the configuration management process area in relation to software embedded in
medical devices [9], [10], [11]. The CMMED is being developed to promote SPI
practices into the CM process adopted by medical device companies. This is an at-
tempt to improve the effectiveness and efficiency of CM within medical device com-
panies through investigating the mapping of medical device regulatory guidelines
against the CMMI CM process area.

The mappings between the medical device standards and the CMMI specific practices
for the CM process result in the CMMED being composed of a number of goals, prac-
tices and activities. The CMMED determines what parts of the CMMI CM process area
are required to satisfy medical device regulations. It also investigates the possibility of
extending the CMMI process areas with additional practices that are outside the remit of
CMMI, but are required in order to satisfy medical device regulatory guidelines.

The following section will detail a mapping of existing software development and
regulatory guidelines for the medical device industry against the CMMI for the CM
process area.

156 F. McCaffery, R.V. O’Connor, and G. Coleman

4 Guideline Mapping

The FDA provides little insight into how CM should be performed other than to state
that a CM plan should exist and that this should be adopted to manage configuration
items for medical device software. Therefore in order to gain a greater understanding of
the CM guidelines that medical device companies follow in order to achieve regulatory
compliance we referred to the medical device software life cycle processes (SW68)
standard. This standard was drafted for use in the medical device sector based on the
lifecycle requirements of ISO/IEC 12207 [16]. This section illustrates the CMMED
structure for the CM process area. In order to achieve this, FDA regulations & SW68
guidelines (for the rest of the paper we refer to these together as medical device stan-
dards) were mapped against the goals and practices of the CMMI CM process area.

This mapping is presented as follows: Firstly, we identify the goals that exist within
the CMMI CM process area. Next the CMMI CM practices are identified within each
CM goal. Then the CM activities (associated with the current practice) that have to be
performed in order to comply with medical device regulations are listed. We then iden-
tify the activities that have to performed in order in to adhere to the CMMI in relation to
the current practice. Finally we lists the CMMI CM activities that are required in order
to meet the medical device regulatory requirements associated with the current practice.
The composition of the resulting CMMED is illustrated in figure 1.

It should be noted however, in some instances the CMMI CM activities associated
with the current practice may not provide full coverage of the medical device stan-
dards and therefore these additional activities have to be added in order to achieve the
full list of activities required to fulfil the objectives of CMMED.

The CMMED has three goals: Goal 1: Establish Baselines, Goal 2: Track and Control
Changes and Goal 3: Establish Integrity. To meet each of these goals it is necessary
for a number of practices and activities to be performed. Each of the following sub-
sections will present the CM activities required for each of the 3 goals.

CMMI CM practices
Medical device

regulations for CM

Non-CMMI practices
that are required for

medical device
standards

CMMI
practices
that are

required for
medical
device

standards

Non-required
CMMI practices

with potential
benefit to medical
device software

CMMI practices not
required for medical

device standards

CMMI CM practices
Medical device

regulations for CM

Non-CMMI practices
that are required for

medical device
standards

CMMI
practices
that are

required for
medical
device

standards

Non-required
CMMI practices

with potential
benefit to medical
device software

CMMI practices not
required for medical

device standards

Fig. 1. Composition of the CMMED

4.1 Goal 1: Establish Baselines

In order to fulfil Goal 1 Establish Baselines the following practices have to be performed:
Identify Configuration Items, Establish a CM System and Create or Release Baselines.

Mapping Medical Device Standards Against the CMMI for Configuration Management 157

Identify Configuration Items. The 4 activities that have to be performed in order to
achieve regulatory compliance in relation to identifying configuration items are:
1. Select the configuration items and the work products that compose them based on

documented criteria
2. Assign unique identifiers to configuration items
3. Specify when each configuration item is placed under CM
4. Identify Off the Shelf Components
The 5 activities that have to be performed in order to satisfy the CMMI practice for
identifying configuration items are:
1. Select the configuration items and the work products that compose them based on

documented criteria
2. Assign unique identifiers to configuration items
3. Specify the important characteristics of each configuration
4. Specify when each configuration item is placed under CM
5. Identify the owner responsible for each configuration item
The 3 activities that are common to both the CMMI and the medical device standards
for identifying configuration items are:
1. Select the configuration items and the work products that compose them based on

documented criteria
2. Assign unique identifiers to configuration items
3. Specify when each item is placed under CM
Therefore, in order to adhere to the medical device standards only 3 out of the 5 ac-
tivities required for the CMMI in relation to identifying configuration items are nec-
essary. However an additional activity is required in order to identify Off-the-Shelf
(OTS) components as this is not included in the CMMI. Therefore 4 CMMED activi-
ties are required for identifying configuration items are:
1. Select the configuration items and the work products that compose them based on

documented criteria
2. Assign unique identifiers to configuration items
3. Specify when each configuration item is placed under CM
4. Identify Off the Shelf Components. Note: this activity is not present in the CMMI

but is required in order to fulfil the requirements specified in the medical device
standards.

Establish a CM System. The 2 activities that have to be performed in order to
achieve regulatory compliance in relation to establishing a configuration management
system (CMS) are:
1. Store and retrieve configuration items in the CM system
2. Store, update, and retrieve CM records
The 8 sub-practices that have to be performed in order to satisfy the CMMI practice
for establishing a CMS are:
1. Establish a mechanism to manage multiple control levels of CM
2. Store / retrieve configuration items in the CMS
3. Share and transfer configuration items between control levels within the CMS
4. Store and recover archived versions of configuration items

158 F. McCaffery, R.V. O’Connor, and G. Coleman

5. Store, update, and retrieve CM records
6. Create CM reports from the CMS
7. Preserve the contents of the CMS
8. Revise the CM structure as necessary
There are 2 activities that are common to both the CMMI and the medical device
standards for establishing a CMS. Therefore, in order to adhere to the medical device
standards, only 2 of the 8 activities required by the CMMI for establishing a CMS are
necessary. The main differences are that CMMI requests the usage of multiple control
levels of CM, as well as archiving and restoration procedures to be in place. The 2
CMMED activities for establishing a CMS are:
1. Store and retrieve configuration items in the CM system
2. Store, update, and retrieve CM records

Create or Release Baseline. There is only a single activity that has to be performed
in order to adhere to the medical device standards in relation to creating or releasing
baselines - Document the set of configuration items that are contained in a baseline.
Whereas there are 4 activities that have to be performed in order to satisfy the CMMI
practice for creating or releasing baselines:
1. Obtain authorisation from the CCB before creating or releasing baselines of con-

figuration items
2. Create or release baselines only from configuration items in the CM system
3. Document the set of configuration items that are contained in a baseline
4. Make the current set of baselines readily available
There is only single CMMED activity that is common to both the CMMI and medical
device standards for creating or releasing baselines. Therefore, in order to adhere to
the medical device standards only one of the 4 activities - Document the set of con-
figuration items that are contained in a baseline – is required for the associated
CMMI practice is necessary.

Summary of CMMED Goal 1. Table 1 summarises goal 1 of CMMED (Establish
Baselines). It may be observed from table 1 that not all of activities of the CMMI
have to be performed in order to satisfy the medical device regulations (in fact only 6
of the 17 CMMI activities have to be performed). However, in order to satisfy the
objectives of the CMMED 1 additional (medical device specific) activity had to be
added (i.e. to satisfy goal 1 of the CMMED).

Table 1. Summary of CMMED Goal 1

Practice CMMI
activities

CMMI activities
to meet medical
device standards

Additional activi-
ties to meet medi-
cal device stan-
dards

Identify
CM items

5 3 1

Establish a
CMS

8 2 0

Create or
delete
Baselines

4 1 0

Total 17 6 1

Mapping Medical Device Standards Against the CMMI for Configuration Management 159

4.2 Goal 2: Track and Control Changes

In order to adhere to the CMMED goal 2 of tracking and controlling changes, the fol-
lowing specific practices have to be performed: Track Change Requests and Control
Configuration Items.

Track Change Requests. The 5 activities that have to be performed in order to
achieve regulatory compliance in relation to tracking change requests:

1. Initiate and record change requests in the change request database
2. Analyse the impact of changes and fixes proposed in the change requests.
3. Review change requests that will be addressed in the next baseline with those

who will be affected by the changes and get their agreement.
4. Track the status of change requests to closure.
5. Each upgrade, bug fix, or patch for OTS software shall be evaluated, and the

evaluation shall be documented

There are 4 activities that have to be performed in order to satisfy the CMMI practice
for tracking change requests:

1. Initiate and record change requests in the change request database
2. Analyse the impact of changes and fixes proposed in the change requests.
3. Review change requests that will be addressed in the next baseline with those

who will be affected by the changes and get their agreement.
4. Track the status of change requests to closure.

There are 4 activities that are common to both the CMMI and the medical device
standards for tracking change requests:

1. Initiate and record change requests in the change request database
2. Analyse the impact of changes and fixes proposed in the change requests.
3. Review change requests that will be addressed in the next baseline with those

who will be affected by the changes and get their agreement.
4. Track the status of change requests to closure.

Therefore, in order to adhere to the medical device standards all of the activities re-
quired for this CMMI practice are necessary, but not always to the same level of de-
tail. However an additional practice is required in order to ensure that each upgrade,
bug fix, or patch for OTS software is identified and evaluated, and that the evaluation
is documented, as this is not included in the associated CMMI practice.

The CMMED activities for tracking change requests are:

1. Initiate and record change requests in the change request database
2. Analyse the impact of changes and fixes proposed in the change requests.
3. Review change requests that will be addressed in the next baseline with those

who will be affected by the changes and get their agreement.
4. Track the status of change requests to closure.
5. Each upgrade, bug fix, or patch for OTS software shall be evaluated, and the evalua-

tion shall be documented. Note: this activity is not present in the CMMI but is re-
quired in order to fulfil the requirements specified in the medical device standards.

160 F. McCaffery, R.V. O’Connor, and G. Coleman

Control Configuration Items. The 4 activities that have to be performed in order to
achieve regulatory compliance in relation to controlling configuration items are:

1. Control changes to configuration items throughout the life of the product
2. Obtain appropriate authorisation before changed configuration items are entered

into the CM system
3. Perform reviews to ensure that changes have not caused unintended effects on the

baselines
4. Record changes to configuration items and the reasons for the changes as appro-

priate

The 5 activities that have to be performed in order to satisfy the CMMI practice to
control configuration items are:

1. Control changes to configuration items throughout the life of the product
2. Obtain appropriate authorisation before changed configuration items are entered

into the CM system
3. Check in and check out configuration items from the CM system for incorpora-

tion of changes in a manner that maintains the correctness and integrity of the
configuration items

4. Perform reviews to ensure that changes have not caused unitended effects on the
baselines

5. Record changes to configuration items and the reasons for the changes as appro-
priate

As the control of configuration items is very important in terms of ensuring the integ-
rity of medical device software it is no surprise that 4 of the 5 activities required for
this CMMI practice are necessary in order to adhere to the medical device standards.

The following list shows the mapping of the medical device standards against each
of the activities required by the CMMI practice for controlling configuration items:
1. Control changes to configuration items throughout the life of the product
2. Obtain appropriate authorisation before changed configuration items are entered

into the CM system
3. Perform reviews to ensure that changes have not caused unitended effects on the

configuration baselines
4. Record changes to configuration items and the reasons for the changes as appro-

priate

Summary of CMMED Goal 2. Table 2, summarises goal 2 of the CMMED (Track
and Control Changes). It may be observed that almost all of the activities of this
CMMI goal will have to be performed in order to satisfy the medical device standards
(in fact 8 of the 9 CMMI sub-practices will have to be performed). However, in order
to satisfy the objectives of CMMED 1 additional sub-practice had to be added.

4.3 Goal 3: Establish Integrity

In order to fulfil CMMED goal 3: Establish Integrity the following specific practices
have to be performed: Establish CM Records and Perform Configuration Audits.

Mapping Medical Device Standards Against the CMMI for Configuration Management 161

Table 2. Summary of CMMED Goal 2

Practice CMMI
activities

CMMI activi-
ties to meet
medical de-
vice standards

Additional
activities to
meet medical
device stan-
dards

Track
change
requests

4 4 1

Control
Config
items

5 4 0

Total 9 8 1

Establish CM Records. The 3 activities that have to be performed in order to achieve
regulatory compliance in relation to establishing CM records are:

1. Record CM actions in sufficient detail so the content and status of each configu-
ration item is known and previous versions can be recovered

2. Identify the version of the configuration items that constitute a particular base-
line.

3. Revise the status and history of the configuration item as necessary

The 6 activities that have to be performed in order to satisfy the CMMI practice for
establishing CM records are:

1. Record CM actions in sufficient detail so the content and status of each configu-
ration item is known and previous versions can be recovered

2. Ensure that relevant stakeholders have access to and knowledge of the configura-
tion items

3. Specify the latest version of the baseline.
4. Identify the version of the configuration items that constitute a particular base-

line.
5. Describe the differences between successive baselines
6. Revise the status and history of the configuration item as necessary

The process of establishing CM records is very important in terms of providing the
traceability evidence that is required to meet the regulatory requirements associated
with medical device software. Half of the activities (3 out of 6) required for this
CMMI practice are necessary in order to adhere to the medical device standards and
are therefore included in CMMED.

The CMMED activities for establishing CM records are:

1. Record CM actions in sufficient detail so the content and status of each configu-
ration item is known and previous versions can be recovered

2. Identify the version of the configuration items that constitute a particular base-
line.

3. Revise the status and history of the configuration item as necessary

162 F. McCaffery, R.V. O’Connor, and G. Coleman

Perform Configuration Audits. The medical device standards do not specify any activi-
ties that have to be performed in order to achieve regulatory compliance in relation to
performing configuration audits. The list of the sub-activities that have to be performed
in order to satisfy the CMMI practice for performing configuration audits are:

1. Assess the integrity of the baselines
2. Confirm configuration records correctly identify the configuration of the configu-

ration items
3. Review the structure and integrity of the items in the CM system
4. Confirm the completeness and correctness of the items in the CM system
5. Confirm compliance with applicable CM standards and procedures
6. Track action items from the audit to closure

This practice in CMMI has no equivalent practice within the medical device regula-
tions. The medical device regulations do not specify any need for auditing the CM
processes and activities. Therefore CMMED contains no activities, as a result of
mapping the regulatory medical device requirements for CM against each of the ac-
tivities required for the CMMI practice relating to performing configuration audits.

Summary of CMMED Goal 3. Table 3 summaries goal 3 of the CMMED (Establish
Integrity). It may now be determined that in order to satisfy medical device standards
that not all of activities of this CMMI goal have to be performed (in fact only 3 of the
12 CMMI activities have to be performed. Additionally, no additional (medical device
specific) activities have to be added in order to satisfy the objectives of CMMED.

Table 3. Summary of CMMED Goal 3

Practice CMMI
activities

CMMI
activities to
meet
medical
device
standards

Additional
activities to
meet medical
device
standards

Establish
CM records

6 3 0

Perform
configuration
audits

6 0 0

Total 12 3 0

5 Preliminary Feedback

In order to assist with preliminary feedback, the CM process outlined by this paper
has been compared against the existing practices within an Irish medical device com-
pany. A high level summary of their comments are included below.

They liked the structure of the CMMED and in particular how it enabled them to
create a list of all the CM practices that they should adopt in order to adhere to the

Mapping Medical Device Standards Against the CMMI for Configuration Management 163

medical device standards. They also made positive comments in relation to CMMED
providing additional information in relation to how their existing CM practices could
be improved by incorporating guidance from the CM CMMI process area in relation
how mandatory medical device activities may be performed.

Upon further consultation with the authors it has also been decided that in order to
assist with SPI within the company that a process diagram shall be created, this will
provide a graphical representation of the logical flow of the practices within their CM
process.

6 Summary and Conclusions

Table 4 provides a summary of the 3 goals within CMMED. There are 40 activities
required by CMMED, consisting of 38 CMMI and 2 medical device specific activi-
ties. In order to satisfy the mandatory medical device CM requirements, 19 of these
activities have to be adhered to (17 CMMI and 2 medical device specific activities).

It is clear that following the guidelines specified in the medical device regulations
will at best, only partially meet the specific goals of this CMMI process area (this
would only fulfil 17 of the 38 activities required by CMMI). Since failure to perform
any specific practice implies failure to meet the specific goal, with respect to CMMI,
it is clear, that the goals of CM cannot be obtained by satisfying medical device regu-
lations and guidelines during software development. But is the opposite true, can
meeting the CMMI goals for CM successfully meet FDA and SW68 guidelines? With
the exception of 2 sub-practices, performing the CMMI specific practices for CM
would in general more than meet the FDA and SW68 guidelines for this area.

If a medical device company follows the CMMI guidelines for CM (with the ex-
ception of 2 activities), this will more than fulfil the CM requirements specified in the
medical device regulations. However, only a fraction of the CMMI guidelines for CM
will be satisfied by adhering to the medical device regulations for CM

Table 4. Summary of CMMED Goals

CMMED
goal

CMMI
activities

CMMI
activities to
meet medical
device
requirements

Additional
activities to
meet medical
device
requirements

Goal 1 17 6 1
Goal 2 9 8 1
Goal 3 12 3 0
Total 38 17 2

Acknowledgements

This research is supported by the Science Foundation Ireland (SFI) funded project,
Global Software Development in Small to Medium Sized Enterprises as part of Lero -
the Irish Software Engineering Research Centre (http://www.lero.ie).

164 F. McCaffery, R.V. O’Connor, and G. Coleman

References

1. Automotive SIG, The SPICE User Group Automotive Special Interest Group, Automotive
SPICE Process Reference Model (2005)

2. Baskerville, R., Pries-Heje, J.: Knowledge Capability and Maturity in Software Manage-
ment. The Data Base for Advances in Information Systems 30(2), 26–43 (Spring 1999)

3. Cass, A., Volcker, C.: SpiCE for SPACE: A method of Process Assessment for Space Pro-
jects, In: SPICE 2000 Conference Proceedings (2000), http://www.synspace.com

4. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Reading (2003)

5. Cusumano, M., Yoffie, D.: Software Development on Internet Time. IEEE Com-
puter 32(10), 60–69 (1999)

6. European Council Directive 93/42/EEC Concerning Medical Devices, (June 14, 1993)
7. Fayad, M., Laitinen, M.: Process Assessment Considered Wasteful. Communications of

the ACM 40(11), 125–128 (1997)
8. FDA Regulations, Code of Federal Regulations 21 CFR Part 820, Food and Drug Admini-

stration (June 1997)
9. FDA/CDRH Guidance Document, General Principles of Software Validation, FDA (June

1997)
10. FDA/CDRH Guidance Document, Guidance for Off-the-Shelf Software Use in Medical

Devices, FDA (September 1999)
11. FDA/CDRH Guidance Document, Guidance for the Content of Premarket Submissions for

Software Contained in Medical Devices, FDA (May 2005)
12. GAMP, Guide for Validation of Automated Systems (GAMP 4), International Society for

Pharmaceutical Engineering (December 2001)
13. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice-

Hall, Englewood Cliffs (2003)
14. Humphrey, W.: Introduction to the Team Software Process. Addison-Wesley, Reading

(2000)
15. ISO/IEC 15504, Information Technology – Process Assessment – Part 5: An exemplar

Process Assessment Model, ISO/IEC JTC1/SC7 (October 2003)
16. ISO/IEC 12207, Information technology - Software lifecycle processes Amendment 2, In-

ternational Standards Organisation (1995)
17. Jonassen-Hass, M.E.: Configuration Management Principles and Practice. Addison-

Wesley, Reading (2002)
18. Medical device software life cycle processes, American National Standard / Association

for the Advancement of Medical Instrumentation, SW68 (2001)
19. McCaffery, F., Donnelly, P., Dorling, A., Wilkie, G.: A Software Process Development,

Assessment and Improvement Framework for the Medical Device Industry. In: Proceed-
ings Fourth International SPICE Conference on Process Assessment and Improvement,
Lisbon, Portugal (April 2004)

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 165–176, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Systematic Review Measurement in Software
Engineering: State-of-the-Art in Measures

Oswaldo Gómez1, Hanna Oktaba1, Mario Piattini2, and Félix García2

1 Institute of Investigations in Applied Mathematics and Systems
Autonomous National University of Mexico UNAM

Scholar Circuit University City, Coyoacán 04510, Mexico City, Mexico
oswaldog@uxmcc2.iimas.unam.mx, ho@hp.fciencias.unam.mx

2 Alarcos Research Group, Department of Computer Science
University of Castilla-La Mancha, Paseo de la Universidad/4,13071, Ciudad Real, Spain

Mario.Piattini@uclm.es, Felix.Garcia@uclm.es

Abstract. The present work provides a summary of the state of art in software
measures by means of a systematic review on the current literature. Nowadays,
many companies need to answer the following questions: How to measure?,
When to measure and What to measure?. There have been a lot of efforts made
to attempt to answer these questions, and this has resulted in a large amount of
data what is sometimes confusing and unclear information. This needs to be
properly processed and classified in order to provide a better overview of the
current situation. We have used a Measurement Software Ontology to classify
and put the amount of data in this field in order. We have also analyzed the re-
sults of the systematic review, to show the trends in the software measurement
field and the software process on which the measurement efforts have focused.
It has allowed us to discover what parts of the process are not supported enough
by measurements, to thus motivate future research in those areas.

Keywords: Software Measurement, Measure, Systematic Review.

1 Introduction

It is a well-known fact nowadays that software measurement helps us to better under-
stand, evaluate, and control the products, processes, and software projects from the
perspective of evaluating, tracking, forecasting, controlling and understanding [8]. On
the one hand, software measurement allows organizations to know, compare and
improve their software quality, performance, and processes. On the other hand, soft-
ware measurement helps organizations to estimate and predict software characteristics
to support better decisions [21]; [10]. As a consequence, software measures are prov-
ing to be very effective for understanding and improving software development and
maintenance projects [4], showing problematic areas in system quality and institu-
tionalizing software process improvement.

It should also be noted that there is a large amount of studies in software measure-
ment, which makes it very easy to lose information and to get confused. For this rea-
son, it is important to follow a specific, strict, and very well defined method for

166 O. Gómez et al.

searching in the current literature. If we take a look at software measurement, we
realize that it is considered to be among the youngest disciplines, and it is currently in
the phase in which terminology, principles, and methods are still being defined and
consolidated [4]. This means that there is not a general agreement about the exact
definitions of the main concepts related to measurement. In addition, no single stan-
dard contains a complete vision of software measurements [11].

With respect to the issues identified above, this article carries out a systematic re-
view with a predefined search strategy, in order to summarize and classify the current
and ongoing efforts in this field. The systematic review has been conducted according
to the [16] proposal, which is very suitable for looking for information about meas-
ures on different sources in a disciplined and systematic way. Hence, Systematic
review allows us to recognize, evaluate and do even more; it helps us to identify is-
sues for planning future investigation and provides us with information about the
consistency of our results [27]. We chose systematic review because of its scientific
methodology that goes one step further than a simple overview.

The goal of this work is to find and clarify the answers to three different questions:
What to measure, when to measure and how to measure. This is achieved by analyz-
ing from the results of the literature review, the following issues: proportion of meas-
ured entities; measured attributes; validated measurement; measurement focus; and
measurement in life cycle software process.

This paper is organized as follows. After this introduction; an overview of the sys-
tematic review process is given. In the third section, the way in which the systematic
review has been carried out on the software measurement field is explained. Then, an
analysis of the results is provided. Finally, the conclusions and future work are dealt
with.

2 Systematic Reviews

It is often recognized in Software Engineering that different research studies are gen-
erally fragmented and limited, not properly integrated, and without agreed standards
[16]. In order to avoid those problems we chose the systematic review to carry out
this investigation on software measures. Systematic review aims to present a fair
evaluation of a research topic by using trustworthy, rigorous and auditable methodol-
ogy, along with a very well defined strategy that allows the completeness of the re-
search to be executed (in this case on software measures). Furthermore, systematic
literature review is a formal and methodological process that allows us to identify,
evaluate, and interpret all existing studies that are related to our investigation on soft-
ware measures based in this case on a research question, but it could be also based on
topic area, or phenomenon of interest. This is done in such a way that it helps us to
summarize the evidence that is currently available concerning a treatment or technol-
ogy. It also serves to identify any gaps in the current research, and thus suggest areas
for further investigations, and finally provide a framework/background to position
new research activities appropriately.

The review provides us with the necessary information to properly address the
software measures, by mapping the measure field, finding the relevant data, ideas,
techniques and their correlation with our investigation. Besides, it can support the

 A Systematic Review Measurement in Software Engineering 167

planning for a new piece of research. Moreover, with this systematic literature review
we can integrate empirical investigation, in order to find out generalizations. We do
this by establishing specific objectives to create critical analysis. An overview of the
systematic review is provided in the next subsection.

2.1 The Systematic Review Process

In order to address and present a fair evaluation of a research topic, the systematic
review is composed of the following phases:

Review Planning Phase: Here the investigation’s goals are established. The Review
Protocol, which is the most important item in this phase, is generated. First and fore-
most, this protocol defines the research question and the methods that will be exe-
cuted in the review. In a broad manner, this phase involves the following, summa-
rized, activities, defined by [27]:

Question Formulization: This activity is considered to be among the most important
in the systematic review process. Here the investigation targets must be defined by
focusing the question and by establishing its Quality and Amplitude.

Source Selection: Primary studies from sources are selected here, by defining a source
selection criterion, setting the studies’ languages, identifying and selecting the sources
after an assessment of them and checking references.

Study Selection: It describes the process and criteria for the evaluation and selection
of studies.

Review Execution phase: This phase involves identification, selection and evaluation
of primary studies, based on the inclusion and exclusion criteria defined in the Review
Protocol. It is composed of the following steps, in summary form:

Selection Execution: This section aims to register the selection process for primary
studies by evaluating them with quality criteria.

Information Extraction: Once primary studies are selected, the relevant data must be
extracted by following an Information Inclusion and Exclusion Criteria Definition, by
defining Data Extraction Forms, and by resolving divergences among reviewers.

Result Analysis: In this phase all the information from the different studies is ana-
lyzed. This phase involves the next step: Result Summarization, which presents the
data resulting from the collected studies by doing Calculus Statistical, Results Tables,
Sensitivity Analysis, Plotting, which will lead to the Conclusion and Final Comments.

The whole process must be stored and the planning and the execution have to guar-
antee that the research can be done. It is worth mentioning here that the Review
Protocol must be evaluated by experts. Finally, many of the activities of the review
process involve iteration to refine the process, and therefore they are not necessarily
sequential.

In the next section, we describe how the review process, which was designed as
appropriate to our research goals, was performed

168 O. Gómez et al.

3 Systematic Review about Software Measures

First of all, it must be emphasized that this paper is an attempt to answer this funda-
mental question: What are the most current and useful measures in the literature?
Since our whole protocol was produced around this question, this is the main step in
our Review Planning Phase. Moreover, we hope that this work will be useful for
project managers and software developers. The defined strategy was the following:
first and foremost, the large collection of paper in current literature about software
measurements was examined. Due to the great diversity of topics in this field, and
with the aim of clarifying and summarizing them in the best way possible, we used
the classifications of concepts defined in the Software Measurement Ontology pro-
posed by [11]. This ontology aims at contributing to the harmonization of the differ-
ent software measurement proposals and standards, by providing a coherent set of
common concepts used in software measurement.

In order to do the research we built the following combinations of search strings:
“(measure OR metric OR quality OR quantitative) AND (process OR engineering

OR maintenance OR management OR improvement OR Software testing OR devel-
opment)”.

All the possible combinations with these words were tested in the following web
search engines: ACM Digital Library, Search IEEE magazines, Wiley Interscience,
and Science@Direct.

The results obtained on the web engines are shown in Table 1.

Table 1. Total Search Results

Sources
Search

Results Reviewed Accepted
Science@Direct 3569 78 10
ACM 950 85 28
IEEE 3740 111 32
Wiley 653 20 8
TOTAL 8912 294 78

As we can see in Table 1, search engines provided us with 8912 papers. Neverthe-
less, it should be pointed out that only 78 were accepted, which represents about 1 %
of the total articles, hardly even that. It is apparent that many articles were rejected.
This is so because if a more limited search had been carried out, it would certainly
have been true that we would have started with fewer results from the search engines,
but at the same time we would have lost important articles. Therefore, a very less
restrictive search was defined: as a result of this, we obtained too many articles, of
which very few were considered apt. Furthermore, we have discarded those measures
that were outside the scope of our model. We have also discarded measures that did
not provide any relevant information, as well as repeated measures proposed by more
than one author so that each measure is included only once. Hence, our attention fo-
cused on papers where keywords and titles included the research strings. These strings
were also searched for in the whole document by some search engines.

 A Systematic Review Measurement in Software Engineering 169

Regarding the execution phase of the systematic review, the selection and evalua-
tion of information was initiated using the terms of the inclusion and exclusion crite-
ria defined in the review protocol. These criteria established that selected studies were
in English and that all of them showed current, useful software measurements, basi-
cally only studies about measures for software development, software project admini-
stration and maintenance were selected. All papers had to satisfy our quality criteria
and in this sense it is important to point out that all the searched-for sources are seri-
ous and that the quality of their papers is guaranteed. Moreover the search engines
were validated by experts. For this reason, our quality criteria also trusted in the qual-
ity of the sources.

Once the papers were selected, the information was extracted by means of an ex-
traction template for objective results which includes study name, author, institution,
journal, date, methodology, results, problems and subjective results which includes
information through authors, general impressions and abstractions, according to the
proposal provided by [27]; in particular, the aims of this template are to store the
results of the execution phase process by extracting, not only the objective informa-
tion, but also the subjective information from each article analyzed.

Finally, in the results analysis phase we analyzed the measures in order to show,
among other aspects, the information about attributes, the entities measured and their
characteristics, the amount of measures in a specific attribute or entity, etc. This phase
is described in more detail in the following section.

4 Result Analysis

The measures extracted from the studies were summarized in terms of the Software
Measurement Ontology, which helped us to find out what kinds of measures exist.
More specifically, this ontology supported us in defining a template by categorizing
the measures in the following three different ways: What to measure? How to meas-
ure? And When to measure?

Consequently, in order to summarize the existing measures, the ISO 15504, CMM,
and CMMI establish a quality background for the improvement of maturity levels
defining the Project, Process and Product as the kind of entities that can be measured.
That is why we extracted attribute and sub-attributes [9] measured of these entities,
from the articles reviewed and classified them into internal or external. With this part
of the analysis we try to answer the question: What to measure? This is the first way
in which we categorized the measurements. Table 2 shows these attributes.

Once the measurements were collected and stored in our template table, we ana-
lyzed the amount of measures which have been defined for the Process, Project and

Table 2. Definition of entities

What?

Entibies
Type of At-
tribute

Project Process Product Attributes
Sub-

attributes Internal External

170 O. Gómez et al.

Product kind of entities. As we can see in Figure 1, the most measured kind of entity
is the product, and the entities whose measurement has been less supported by the
current literature are the project and process. The reason is that measuring product is
easier than measuring process and project, in which we usually find ambiguous defi-
nition of attributes. For products, quality and technical attributes are very well defined
because quality has been strongly focused on product. Finally, measurements on
product entities help to measure process and project ones.

Fig. 1. Proportion of measured entities

Next, we shall look at another closely-related issue, which is the amount of meas-
ured attributes. Figure 2 shows the proportion of measure attributes according to our
analysis of the accepted papers. As Figure 2 shows, size is one of the most measured
attributes. The point is that the size is a base measure, not only needed in most of the
derived measures, but the size measure is also easier to obtain because it focuses on
one of the most “tangible” attributes which is the source code. Moreover, size has
very well defined scales, units and methods of measurement like functions Points (FP)
[14]; therefore it is very difficult to get confused with size measurements. Further-
more, cost estimation is derived from size and the overall productivity, and finally the
schedule is based on the size and cost estimates [8]. Hence size is used on most of
control measures in a software project. The arguments set out here lead to an explana-
tion of why size has one of the highest values in Figure 2.

In order to show in a in a better way the information displayed in Figure 2, Table 3
show the attributes order by the most measured.

In connection with the most measured attributes, the complexity attribute is used in
different contexts, for example: source code complexity, Design complexity, UML
Diagrams complexity, Architecture complexity, etc. Hence it can be seen that com-
plexity has gathered many measurements from its different applications. If we take a
look at Figure 2 in greater detail, it should be pointed out that attributes like Activity,
Role, Work products and Accuracy are the least measured. That is due to the fact that
these attributes are mostly related with process and project kind of entities, for which
there is not a well defined basic attribute.

Once the “What to Measure?” question was analyzed. The next step was to tackle
the question: “How to measure?” To answer this question we gathered how the meas-
urements of attributes in the selected papers were made and classified them in terms
of the following characteristics: Representation, Description, Base or Derived Meas-
urement, Scale [9], Empirically [30], [15], [2], [20] or Theoretically [28], [4], [29],
[31], [23] validated. This analysis is summarized in Table 4.

 A Systematic Review Measurement in Software Engineering 171

Fig. 2. Measured attributes

Table 3. Measures attributes

Complexity 19% Productivity 1%
Size 16% Testability 1%
Inheritance 8% Costumisability 1%
Defect 7% Roles 1%
Structuredness 7% Work Products 1%
Time 5% Dependencies 1%
Others 5% Reusability 1%
Activity 3% Navegation 1%
Accuracy 3% Presentation 1%
Cohesión 3% Centrality 1%
Coupling 3% Stratum 1%
Similarity 3% Links 1%
Changes 2% Search engiens 1%
Effort 2% Interaction 1%
Cost 2% Variation 0%
Relevans 2% Risk 0%

Let us have a look at the last characteristic, which has as its goal to discover if a
measure has been validated empirically and/or theoretically. The aim of theoretical
validation is to check whether the intuitive idea of the attribute being measured is
considered in the defined measure. The main goal of empirical validation is to obtain
objective information concerning the usefulness of the proposed metrics. Theoretical
validation by itself is not enough to guarantee the usefulness of the measure, because
it may occur that a measure is valid from a theoretical point of view, but it has no
practical relevance in relation to a specific problem. As a consequence, a measure
which has not been validated is not demonstrated to be useful. We therefore classified
the measures in such a way as to know how many had been empirically and/or theo-
retically validated. This is shown in Figure 3.

172 O. Gómez et al.

As can be observed in Figure 3, about half of the measures found in the selected papers
had been only empirically validated. This leads us to the conclusion that there is a great
tendency to empirical validation. Furthermore, we can see that (24%) of the measurements
had been validated only theoretically, although it was recognized in the papers that they
need empirical validation. Finally only (20%) of the measurement had been both empiri-
cally and theoretically validated. It should be pointed out that it is necessary to get a com-
mon agreement to validated measures theoretically. Moreover empirically validation
needs more data extracted from “real projects” in order to get practical conclusions.

Regarding the measurement focus found in the articles analysed, we have discov-
ered the following approaches: Structured [4], measurement focussing in Process,
Object Oriented (OO) [7] [5], [17], [19], [3], Quality [22]. Function Points [14], UML
[19], Complexity [18], [12], Project [24] and OCL [26].Figure 4 shows the amount of
measurement in each approach. It shows us that the most supported approaches by
measure are Object Oriented (OO) ones. This is due to this kind of projects are cur-
rently the most popular in software development. Continue with this part of the analy-
sis, there are efforts to get a universal WEB measures definition, with this review we
found conceptual models and frameworks in order to classify WEB measures.

Table 4. Definition of measure attributes

HOW?
Measure

Representation Description Based Derived Scale Validation Measure focus

Fig. 3. Validated measures

Fig. 4. Measure focus

 A Systematic Review Measurement in Software Engineering 173

Finally, we analyzed the third question: When to measure?, To classify in what
parts of the lifecycle project the measure must be taken for projects and process enti-
ties, the PMBOK guide [1] was selected. In order to group when the measurements
are taken for the product entity, the waterfall lifecycle model was applied. We chose
these two models due to their wide acceptation and genericity. Figure 5 shows the
proportion of product measurements in the different phases of the software life cycle:

Fig. 5. Measure in life cycle software process

As we can see in Figure 5, most measurements are carried out during the Design,
Testing and Development phases of the waterfall lifecycle software process. In the
Design phase, products such as architecture, system designs, requirements analysis,
etc. are generated. Hence it is necessary to support this phase with measurements, in
order to know characteristics of these products when carrying out the design. More-
over, measurement in the Design phase can support the future products to be gener-
ated, which mean that this phase is one of the most measured. Continue with this
analysis, it should be pointed out that the Development phase is one of the most
measured, because most of the software products are created here, such as: manuals,
source code and, among other products, the software itself. Therefore, it is possible to
collect quantity information about these products here. According to PSP [13], meas-
ures about size, effort, time, faults, defects, LOC, etc. are commonly taken in this
phase. Another factor to take into account is that once the software system is created,
it is necessary to validate if this system fulfils the quality requirements. The counting
faults and deriving the reliability is the most widely applied and accepted method

Fig. 6. Measure in life cycle projects

174 O. Gómez et al.

used to validate systems; most of this information focuses on the product and is com-
monly reported in terms of measurements. This is done in not only in the early phases
but also especially in the testing phase, which is another of the most-measured phases
in lifecycle software process.

In addition, the PMBOK guide defines the following general phases for project
life: Initial, intermediate, and final phases. In Figure 6 we show the distributions of
measures through these phases.It is worth mentioning here that in the initial phase
there could be sub-phases with one or more deliverables, according to the kind of
project. In these sub-phases the following are usually measured: size, complexity,
level of risk, cash, etc. Most measurements concentrate on the Initial phase, as in this
phase the planning for the whole project is executed- this in turn constitutes the main
effort in project management. In the Intermediate phase, many control activities are
carried out in order to ensure the success of the project. Periodical reports are thereby
generated with quantity information about process and project measures and indica-
tors. For these reasons this phase is also one of the most measured in project lifecycle
for project and process entities.

5 Conclusions and Further Work

Software measurements are very important in software development process, because
they help us, to control, estimate and improve process, projects and products, among
other things. With that in mind, this article attempts to provide the state of art in soft-
ware measurement, by carrying out a systematic review whose purpose is to summa-
rize the most current and useful measures in the literature.

With this systematic review, we find out the following results:

(1) Measures are strongly aligned to product entity. Since this kind of entity has
better attribute definition than project and product entities have, there are large
amount of measures for the product. This leads to the conclusion that if an entity has a
few measures, it is due to the fact that it doesn’t have specific attribute.

(2) Complexity gathered a great amount of measures because this attribute is used
in different contexts. While size is also one of the most measured attributes since it is
used in cost and development schedule estimation

(3) There is a great tendency to obtain empirical validation. But it is necessary to
get more data extracted from “real projects”, in order to get practical conclusions and
to improve software quality.

(4) Development and Design are the most measured phases in lifecycle software
process because it is in these phases that most software products are generated.. It
should be also noted that the testing phase is also one of the most measured phases.
This is thanks to the fact that this phase involves quality activities for evaluating
software quality characteristics, generally reported in terms of quantity values. But
quality measures are considering in the early software development phases by count-
ing faults which is the most widely applied method to determine software quality.

(5) For projects and process entities most measurements are concentrated in the
Initial and Intermediate phases. That is because it is here that the project planning and
control activities are developed.

 A Systematic Review Measurement in Software Engineering 175

(6) There are a large number of measures for OO projects. This is because these
kinds of projects are currently the most popular in software development. Hence a lot
of research has been done in this field.

(7) So many efforts had been made to get a universal WEB measures definition. In
this review we found conceptual models and frameworks in order to classify WEB
measures.

Finally, we need to relate the measurements found in this article to a specific soft-
ware development process. The aim of this is to settle when a measure must be taken.
To reach this goal, in our specific research, further work will take in the Process
Model for the Software Industry (MoProSoft), which focuses on small companies and
which is also the Mexican norm.

Acknowledgements

This article was supported by the Process Improvement for Promoting Iberoamerican
Software the Competitiveness of Small and Medium Enterprises (COMPETISOFT)
and Science and Technology for Development (CYTED).

References

1. ANSI/PMI. A Guide Project Management Body of Knowledge (PMBOK Guide) an
American National Standard, ANSI/PMI 99-001-2004, 3rd edn., Project Management In-
stitute, Inc, U.S.A (2004)

2. Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Transactions on Software Engineering 25(4), 435–437 (1999)

3. Bansiya, J., Davis, C.: A Hierarchical Model for Object-Oriented Design Quality Assess-
ment. IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

4. Briand, L., Morasca, S., y Basili, V.: Property-Based Software Engineering Measurement.
IEEE Transactions on Software Engineering 22(1), 68–86 (1996)

5. Brito Abreu, F., Carapuça, R.: Object-Oriented Software Engineering: Measuring and con-
trolling the development process. In: Proceedings of the 4th International Conference on
Software Quality, McLean (USA) (1994)

6. Calero, C., Ruiz, J., Piattini, M.: Classifying web metrics using the web quality model.
Online Information Review 29(3), 227–248 (2005)

7. Chidamber, S., Kemerer, C.: A Metrics Suite for Object Oriented Design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

8. Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A.: Best Practices in Software
Measurement. How to use metrics to improve project and process performance, 1st edn.
295 Seiten-Springer, Berlin (2004)

9. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach 2nd edn.
PWS Publishing Company (1997)

10. Florac, W.A., Carleton, A.D.: Measuring the Software Process, 1st edn. Addison-Wesley,
U.S.A (1999)

11. García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., Genero, M.: To-
wards a consistent terminology for software measurement. Information and Software
Technology, 1–14 (2005)

176 O. Gómez et al.

12. Henry, S., Kafura, S.: Software Structure Metrics Based on Information Flow. IEEE Trans-
actions on Software Engineering 7(5), 510–518 (1981)

13. Humphrey, S.H.: PSP A Self-Improvement Process for Software Engineers, 1st edn. Addi-
son-Wesley, U.S.A (2005)

14. IFPUG, IFPUG: Function Point Counting Practices Manual, Release 4.2. International
Function Point Users Group, USA –IFPUG, Mequon, Wisconsin, USA (2004)

15. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Aca-
demic Publishers, Dordrecht (2001)

16. Kitchenham, B.: Procedures for Performing Systematic Reviews. Joint Technical Report
Software Engineering Group. Department of Computer Science Keele University, United
King and Empirical Software Engineering, National ICT Australia Ltd, Australia, pp. 1–28
(2004)

17. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Guide. Prentice Hall,
Englewood Cliffs, Nueva Jersey (1994)

18. McCabe, T.: A Software Complexity Measure. IEEE Transactions on Software Engineer-
ing 2, 308–320 (1976)

19. Marchesi, M.: OOA Metrics for the Unified Modeling Language. 2nd Euromicro Confer-
ence on Software Maintenance and Reengineering 1998, 67–73 (1998)

20. Perry, D., Porte, A., Votta, L.: Empirical Studies of Software Engineering: A Roadmap. In:
Finkelstein, A. (ed.), Future of Software Engineering. pp. 345–355, ACM (2000)

21. Pfleeger, S.L.: Assessing Software Measurement. IEEE Software, pp. 25–26 (March/April
1997)

22. Piattini, M., García, F.O.: Calidad en el desarrollo y mantenimiento de software, 1st edn.,
Ra-Ma. Spain (2003)

23. Poels, G., y Dedene, G.: Distance-based software measurement: necessary and sufficient
properties for software measures. Information and Software Technology 42(1), 35–46
(2000)

24. Putnam, L.H., Myers, W.: Measures for Excellence - Reliable software on time, within
budget. Prentice Hall, New Jersey (1992)

25. Raynus, J.: Software Process Improvement with CMM, 1st edn., Artech House, U.S.A
(1999)

26. Reynoso, L., M., G., Piattini, M.: Measuring OCL Expressions: An Approach Based on
Cognitive Techniques. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software
Conceptual Models ch. 5, Imperial College Press, UK (2004)

27. Travassos, G.H., Boilchi, J., Mian, P.G., Natali, A.C.C.: Systematic Review in Software
Engineering. Technical Report Programa de Engenharia de Sistemas e Computaçâo PESC,
Systems Engineering and Computer Science Department COPPE/UFRJ, Rio de Janeiro,
pp. 1–30 (2005)

28. Weyuker, E.: Evaluating Software Complexity Measures. IEEE Transactions on Software
Engineering 14(9), 1357–1365 (1988)

29. Whitmire, S.: Object Oriented Design Measurement. John Wiley, Chichester (1997)
30. Wohlin, C., Runeson, P., Höst, M., Ohlson, M., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering: An Introduction. Kluwer Academic Publishers, Dordrecht (2000)
31. Zuse, H.: A Framework of Software Measurement. Walter de Gruyter, Berlin (1998)

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 177–191, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Engineering a Component Language: CompJava

Hans Albrecht Schmid and Marco Pfeifer

University of Applied Sciences Konstanz, Brauneggerstr. 55, D - 78462 Konstanz, Germany
schmidha@htwg-konstanz.de, mpfeifer@htwg-konstanz.de

Abstract. After first great enthusiasm about the new generation of component lan-
guages, a closer inspection and use identified together with very strong points some
disturbing drawbacks, which seem to have been an important impediment for a
wider acceptance. A restricted acceptance of component languages would be harm-
ful since the integration of architecture description with a programming language
increases the quality of application architecture and applications, as our experience
confirms. Therefore, we took an engineering approach to the construction of a new
Java-based component language without these drawbacks. After deriving compo-
nent language requirements, we designed a first language version meeting the re-
quirements and developed a compiler. We used it in several projects; and
re-iterated three times through the same cycle with improved language versions.
The result, called CompJava, to be presented in the paper seems to be mature for
use in an industrial environment.

Keywords: Components, Component language, Component composition, Com-
ponent fragment, Connections.

1 Introduction

The new generation of component languages, like ArchJava [1] [2], ComponentJ [9],
ACOEL [11], and to a smaller degree, KOALA [7] [8] made us enthusiastic about the
new way of program construction without reference handling. The integration of ar-
chitecture description with a programming language pushes the more abstract archi-
tecture-description language based approach (see ADL classification framework [6],
[5]) forward towards a direct use during system development. Our experience con-
firms that this increases developer’s awareness of application architecture, and even
forces them emphasizing it. Consequently, it increases the quality of applications.

However, a closer inspection and use of component languages identified together
with their strong points some small, but disturbing drawbacks.

For example, ArchJava is strong with regard to a clear composition of a component
from subcomponents, except for some missing encapsulation and an overly complex
connect-statement. But it shows substantial weakness with regard to using Java code for
the construction of components, and filters for collaborating with subcomponents. Nor
does it lend itself to the structuring of the implementation of a larger component into
classes, which is practice in an industrial environment, neither regarding the ArchJava
source nor the generated code. Another example is that ArchJava components behave
practically like C++ classes with regard to types and inheritance (without explicit type

178 H.A. Schmid and M. Pfeifer

definition, implementation and derivation). Another weakness is that ArchJava re-defines
constructs for concepts, like interfaces, which it shares with Java. More drawbacks and
details are given in section 2.

It seems that these drawbacks may have been an impediment for a wider accep-
tance and broader use of component languages, which would be harmful. Therefore,
we designed a new component language that does not have these drawbacks, follow-
ing a sound engineering approach. We derived a list of component language require-
ments from the identified drawbacks. We constructed a component language that
covers the requirements (the first version being available fall 2003). Then, we used
the language in projects, and had three iterations with improved language definitions.
Now, the language seems to be mature for industrial use.

Section 3 gives an overview about distinguishing structuring principles of CompJava,
and section 4 introduces its type concept. Section 5 shows how components are com-
posed in a structured way from component fragments, and section 6 shows how they are
composed from subcomponents. Section 7 presents dynamic architectures using a Web
server example.

2 Language Requirements

This section describes drawbacks identified in component languages, and derives spe-
cific requirements from them. These component language requirements complement
general, but unlisted requirements, defined by a kind of intersection of the features of
existing languages.

Embedded OO-Programming Language. A component language, like ArchJava,
embeds a programming language, like Java, and uses its constructs to implement compo-
nents. ArchJava has ports with both provided and required interfaces. It defines the inter-
faces of a port by listing, after the keyword provides or requires, operation specifi-
cations, or by listing method implementations. But you cannot define the interfaces of a
port using Java interfaces. Thus, there are different constructs for the concept “interface”
in the component language and the OO-language, which is a great drawback.

On the other hand, ArchJava allows deriving components from classes, like the
worker component from the class Thread [1]. But how can a component, which is a
first-class citizen of its own, “be” a class and inherit implementation from it?

Therefore, requirement 1 is: a component language should not reinvent constructs for
concepts it shares with its programming language. On the other hand, it should not inter-
mingle differing concepts in the component language and programming language.

Component Inheritance. ArchJava transfers the type concept of class-based languages
directly to components. It defines a component type implicitly as the type that is gener-
ated by a component, and it defines inheritance in such a way that a derived component
inherits from a base component both the component type and its implementation.

This has two drawbacks. An independent definition of component types is required
to define e.g. a product line architecture or a component framework. A product line

 Engineering a Component Language: CompJava 179

architecture defines product component types which are implemented by different
product components. Similarly, a component framework defines a set of collaborating
component types which are implemented by different components. Second, a compo-
nent should not inherit the implementation from another component, but should be
composed with the other component in order to reuse its functionality. Therefore,
requirement 2 is that the definition of component types and inheritance among them
should be provided, but implementation inheritance among components should be
disallowed.

Component Encapsulation. ArchJava allows that a parent component invokes internal
methods of a subcomponent which are not defined by a provided port. This breaks the
encapsulation of the subcomponent. Further, a graceful evolution is inhibited since it is
not possible that a sibling subcomponent invokes these methods instead of the parent
component at a later point of the evolution. On the other hand, ACOEL allows that a
parent component P exposes in a port interface a reference to a subcomponent S. When P
passes that reference to a sibling component, the sibling may connect its own ports or
those of its subcomponents to ports of S. This breaks component encapsulation since a
component like S could be a subcomponent of two parent components.

Requirement 3 is that a component should be completely encapsulated, i.e. it
should collaborate only via its ports with external code. As a consequence, a subcom-
ponent of a component must not collaborate with other components outside of its par-
ent component. Therefore, the passing of component or port references should be
restricted or prohibited.

Interface Symmetry. ArchJava has a complete symmetry among provided and re-
quired interfaces with regard to their definition and their use, since a port may com-
prise both of them. ACOEL [11] has a symmetry with regard to their definition, but
not with regard to their use. A mix-in allows putting a filter between a provided port
and the implementing class. But it does not allow putting a filter between the imple-
menting class and a required port.

Requirement 4 is that the definition and the handling of provided and required
ports should be symmetrical.

Ports and Connectors. An ArchJava port may combine a provided and a required
interface, like:

 port port1 provides m1, m2 requires m3, m4;

As usual, a port with a required interface I1 may be connected to a port with a pro-
vided interface I2 when I2 is a subtype of I1. But an ArchJava connector may fork the
calls from a required interface I1 to several provided interfaces like I2 and I3 if each is
a supertype of I1, and their union is a subtype of I1, and the intersection of I1, I2 and I3
is empty. For example, with port2 and port3:

 port port2 provides m3, m6 requires m1, m5;
 port port3 provides m4, m5, m6 requires m2, m3;

180 H.A. Schmid and M. Pfeifer

ArchJava allows to connect port1, port2, and port3 by a connect statement. If port1
would require additionally m6 the connection would not be correct and rejected. This
is not easy to check and understand for a programmer; it might be considered as a
new kind of spaghetti problem (without dining philosophers!). Though it is easy for a
compiler to check what happens, we should disallow it.

Requirement 5 is that the definition of ports and connectors should be made in a
way that is easily understandable to a programmer.

Collaboration of Subcomponent Ports with Code. ArchJava defines private ports in
order to connect component code with a port of a subcomponent. However, a private
port is a contradiction in itself since the ports of a component define its interfaces to
the outside, i.e. the points of collaboration with external code: So what is the seman-
tics of a private port? It is even more confusing that ArchJava allows connecting two
private ports; what does that mean? Our conclusion is that the concept of private port
is not meaningful. Requirement 6 is that an adequate construct should connect com-
ponent code with a port of a subcomponent.

Implementation Isomorphism with OO-Based Approach. ArchJava defines and
generates a single component class which lists the provided methods of all public
and private ports of the component. It does not lend itself to grouping together in a
class the methods that implement the operations of the same port. Similarly, the
required operations of all ports are always invoked from that list of methods. There
is no direct way to group together in a class the methods that invoke the operations
of the same port. This is in contrast to the usual OO-based implementation of a
component where the provided methods of each port are implemented by a differ-
ent class, and the required methods of each port are usually invoked by methods
from different classes.

Therefore, requirement 7 is that the source code of a component and the code
generated from it should have some isomorphism with corresponding code written in
class-based OO-languages.

Implementation Efficiency. The efficiency of the code generated from a compo-
nent language may not be a primary concern when large architectural components
with powerful operations are realized. But in many cases, the efficiency of a fre-
quently performed operation invocation matters. Consider e.g. a scanner, used e.g.
as a subcomponent of a compiler, which is certainly not a lightweight component.
It fetches the next character from a source file over a required interface with a
getCharacter-operation (compare section 6). The efficiency of that frequently per-
formed operation invocation has a strong influence on the scanner overall perform-
ance.

Requirement 8 is that the code generated from a component language should
have about the same efficiency for basic constructs, like e.g. operation invocation
over connected ports, as an equivalent (but not tricky) class-based implementation.

 Engineering a Component Language: CompJava 181

We state that requirement due to its importance for a wide acceptance of component
languages, though we cannot cover it in this paper for space reasons.

3 CompJava Overview

Distinguishing features of CompJava are, besides the definition of component types
and component type inheritance, its structuring facilities for component construction.
CompJava allows not only, like the new generation of component languages, to com-
pose components from subcomponents in a structured way. It allows composing them
also in the same way from code building blocks, or from a combination of subcompo-
nents and filters formed by code building blocks.

CompJava has code building blocks called component fragments. A component
fragment might be considered as a simply structured light-weight component without
ports: it provides exactly one interface, and it requires usually one interface. The pro-
vided interface of a component fragment is explicitly indicated in the form of a Java
interface; the required interfaces of a component fragment are implicitly given by the
visible ports and plugs of the enclosing component. There are three implementation
variants of a component fragment: anonymous class, inner class and method block;
from which a user may select the suitable one.

CompJava introduces plugs which are used mainly for connecting component
fragments with subcomponent ports.

Ports of subcomponents are connected with the connect-statement to other ports or
plugs. Component fragments are attached to the inside of the component ports or to
plugs with an attach-statement. Thus, CompJava allows to compose in a clear, clean
and structured way:

1. a low-level component from component fragments, as illustrated by Figure 1 a)
2. a high-level component from subcomponents, as illustrated by Figure 1 b)
3. a medium/high-level component from a combination of subcomponents and com-

ponent fragments that are used as filters, as illustrated by Figure 1 c)

For a graphical depiction of the composition of a component, we have enriched
UML 2 component diagrams with component fragments and plugs (depicted by a
diamond). A component fragment is represented according to the selected implemen-
tation as an anonymous class, an inner class or as a method block (depicted like an
anonymous class without class head).

The first version of the CompJava compiler has been available since winter
2003/2004, three more versions followed. The version available since fall 2006 is
integrated in Eclipse. The CompJava Designer Eclipse-plugin is a graphical design
tool that allows to draw enriched CompJava component diagrams and to generate
component code skeletons from them.

The following sections introduce the CompJava language and show how their con-
structs satisfy the requirements. We use a compiler as a running example. The com-
piler component is composed from a scanner, parser and other subcomponents.

182 H.A. Schmid and M. Pfeifer

Comp1

(a)

«comp
fragment»

«comp
fragment»

(b)

Comp1

Comp2

Comp3

Comp4

Comp1

«comp
fragment»

«comp
fragment»

Comp2

Comp3

«comp
fragment»

(c)

Fig. 1. Composition of a component from component fragments (a), from subcomponents (b),
and from a combination of them (c)

4 Component Types

Let us consider first the scanner component. We define the provided interface of the
scanner as a Java interface. It includes all scanner-related responsibilities, like setting
the file name of the source file to be processed, and fetching the next token from it.

interface ScannerIF {
 Token getNext();
 void setSource(String sourceName);
}

Since the ScannerIF interface includes all source file processing related responsi-
bilities, the component type Scanner1Type is defined with a single provided port.

component type Scanner1Type {
 port in provides ScannerIF;
}

A component type defines all interfaces of a component. That means components
are completely encapsulated: all methods in a component, except for the main
method, can be invoked from outside only via provided ports, and all methods can
invoke an outside method only via required ports.

A port has either a provided, a required or an event interface. A port declaration
gives the port name and after the corresponding keyword the associated interface. An
event port is similar to a required port, but its operations must not have results, and

 Engineering a Component Language: CompJava 183

several provided ports of event listeners may be connected to it. As we show in sec-
tion 7, a component type may also define port arrays or port vectors.

A component type may extend another component type. It inherits all ports, and it
may extend the interface of inherited provided ports or may add provided ports.

5 Low-Level Components

This section shows how low-level components are composed from component frag-
ments.

5.1 Implementing Provided Ports

A component has a component type (indicated by the ofType-clause). It implements
the provided ports, and may invoke operations from required ports, specified by its
component type. In the Scanner1 component (see Figure 2), an attach-statement at-
taches the inside of the provided port in to a component fragment, an anonymous
class implementing the ScannerIF interface.

Scanner1
ScannerIF

ScannerIF

in

component Scanner1 ofType Scanner1Type{
//port in provides ScannerIF;
attach This.in to new ScannerIF {
private File sourceFile;
void setSource(String name){//open sourceFile}
char getChar(){//next char from sourceFile}
Token getNext(){
Token current = new Token();
char c = getChar();
while (c != separator){
current.append(c);
c = getChar(); }
return current; }
};
}

Fig. 2. Scanner1 component with port in providing the ScannerIF implemented by a anony-
mous class

An attach-statement may be used to attach the inside of a provided port to a com-
ponent fragment that implements an interface I. The condition is that I extends (in-
cluding equals) the port interface; it is checked at compile time. A component frag-
ment may be a Java construct: an instance of an anonymous class, as shown, or an
instance of an inner class. The inside of a port is indicated by the keyword This,
which stands for the component instance, followed by the port name. The declaration
of inner and anonymous classes follows the Java standard; the only difference is that
they are used inside of a component instead of a class.

When a component, like Scanner1, is quite small and not composed from other
components, it might be a disadvantage that its implementation generates two object

184 H.A. Schmid and M. Pfeifer

instances: one of the application-specific component fragment and another one of the
component class. Therefore, CompJava allows that a component fragment is formed
by a method block. A method block is a sequence of methods that implement a given
interface (see Figure 3). A method block is not a Java construct, but an analogon to a
Java block, which is a sequence of statements. When different provided ports are each
attached to a method block, there is the restriction that their interfaces must have an
empty intersection.

Consequently, CompJava provides component fragments which include method
blocks, inner classes or anonymous classes, in order to structure the implementation
of a component.

5.2 Accessing Required Ports

The Scanner mixes up two different concerns, scanning the program character stream,
and handling of the source file to be parsed. Similarly, the ScannerIF interface mixes
up two different concerns, accessing the tokens which the scanner creates, and deter-
mining the source file to be parsed. We should separate the different concerns, scan-
ning and source file handling. To this purpose, we define two interfaces, TokenIF and
SourceAccess:

interface TokenIF {
 Token getNext();
}
interface SourceAccess {
 char getChar();
}

The new scanner component does not include the source file handling but fetches
the source file characters via a required interface. We define the component type
Scanner2Type with a provided interface TokenIF and a required interface SourceAc-
cess:

Scanner2

TokenIF
TokenIF

token

source

Source
Access

Fig. 3. Scanner2 component with port token providing the TokenIF implemented by a method
block, and port source requiring the SourceAccess interface

component Scanner2 ofType Scanner2Type {
 //port token provides TokenIF;
 //port source requires SourceAccess;
 attach This.token to TokenIF {
 Token getNext(){
 Token current = new Token();
 char c = This.source.getChar();
 while (c != separator){
 current.append(c);
 c = This.source.getChar();}
 return current; }
 };

}

 Engineering a Component Language: CompJava 185

component type Scanner2Type {
 port token provides TokenIF;
 port source requires SourceAccess;
}

The Scanner2 component attaches the token port to a component fragment, a
method block. It implements the TokenIF and scans the source file in order to deter-
mine the next token. When it needs the next character from the source file, it simply
invokes the getChar-operation defined in the SourceAccess interface via the inside of
the required port source.

6 Component Composition

A compiler is a top-level component that is composed from a scanner, a parser etc.
For that reason, we declare its type without any ports. The type of the parser defines a
required interface TokenIF, and other ones which we do not consider.

component type CompilerType {}
component type ParserType {
 port ...;
 port getToken requires TokenIF;
}

6.1 Subcomponents

A component may be composed from subcomponents. E.g. the Compiler1 component
(see Figure 4) is composed from a scanner, a parser, and other subcomponents like a
code-generator which we disregard.

A component may contain subcomponent declarations and connect-statements that
are processed with the initialization of the component.

A subcomponent declaration declares a subcomponent variable, like myParser and
myScanner, of a component type; it may assign to it an instance of a matching com-
ponent created with the new operator and the component constructor, like a Parser
res. a Scanner2 instance.

A connect-statement connects a required port of a subcomponent (instance), like
getToken of Parser, to a provided port of a subcomponent (instance), like token of
Scanner2, as Figure 4 shows. A constraint checked by the compiler is that a required
port can be connected to only one provided port; but many required ports may be con-
nected to the same provided port. An event port may be connected to many provided
ports. The compilation of a connect-statement includes port-matching, i.e. checking if
the provided port interface extends (incl. equals) the required port interface. We may
use a connect-statement also to connect a port of a subcomponent directly with the
inside of a matching port of the (parent) component.

6.2 Connecting Ports with Plugs

The Compiler1 component contains a component fragment, an anonymous class imple-
menting the interface SourceHandling, which the source port of the Scanner2 should
invoke. But a connect-statement does not allow connecting a subcomponent port with a
component fragment. Therefore, we introduce plugs replacing private ports of ArchJava.

186 H.A. Schmid and M. Pfeifer

Compiler1

Parser Scanner2

«comp fragment»

main()

getToken

TokenIF

token source

Source
Access

Source
Handling

sourceHandler

Fig. 4. Component Compiler1 composed from subcomponents Parser and Scanner2 and a
component fragment implementing the interface SourceHandling

A plug is a generic construct that exceeds the generic possibilities provided by Java
parametric interfaces or classes. The generic expression “plug<interface>” generates a
plug of the interface type. It might be considered as a variable on which only a very
limited set of operations may be executed: it may be used in connect- and attach-
statements, or it may be used in a component fragment to invoke an operation defined
in the plug interface.

The Compiler component (see Figure 4) declares a plug of the interface type Sour-
ceHandling named sourceHandler. The plug is used to pass operation invocations
from the required port of the scanner subcomponent to a component fragment of the
compiler component, which does all handling of the source file.

A connect-statement connects the required port source of the scanner with that
plug, matching at compile time whether the plug interface extends the required port
interface. The main method, which gets the filename of the source file passed as a
parameter, invokes the setSource-operation via the same plug.

An attach-statement may attach a plug to a component fragment, as shown in Fig-
ure 4. It checks at compile time whether the interface of the component fragment ex-
tends the plug interface. The constraint is that the same plug may appear only once on
the left-hand side of an attach- or connect-statement, but several times on their right-
hand side and/or be used for operation invocations.

interface Sourcefile {
 void setSource(String sourceName);
}
interface SourceHandling extends
 Sourcefile, SourceAccess { }
component Compiler1 ofType CompilerType {
 ParserType myParser = new Parser();
 Scanner2Type myScanner = new Scanner2();
 connect myParser.getToken to myScanner.token;
 plug<SourceHandling> sourceHandler;
 connect myScanner.source to sourceHandler;
 attach sourceHandler to new SourceHandling{
 private File sourceFile;
 void setSource(String name){//open sourceFile}
 char getChar(){
 //read next char from sourceFile
 }
 };
 public void main(String[] args)
 { String sourceName = args[1];
 new Compiler1();
 This.sourceHandler.setSource(sourceName);
 //start parser via a plug and port not shown
 }

}

 Engineering a Component Language: CompJava 187

6.3 Factoring Out SourceHandling

Suppose that we want to reuse the anonymous source handling class with the interface
SourceHandling shown in Figure 4. Then we should factor it out and transform it into
a separate source file processing component with the component type SourceType.

component type SourceType {
 port source provides Sourcefile;
 port accessSource provides
 SourceAccess;
}

The component Source (see Figure 5) contains a SourceHandling component
fragment that is identical to the component fragment used by the Compiler1 compo-
nent (see Figure 4).

Fig. 5. Component Source with the provided ports source and accessSource attached to plug
sourceHandler attached to an anonymous class as component fragment

Since we want to attach both provided ports to the same component fragment, we
declare the plug sourceHandler of type SourceHandling. It is attached to the compo-
nent fragment with an attach-statement. The inside of each provided port is attached
to the plug with each an attach-statement.

Compiler2

Parser Scanner2

«comp fragment»

main()

getToken

TokenIF

token source

Source
Access

Source
file

setSource

Source

accessSource

source

Fig. 6. Component Compiler2 composed from subcomponents Parser, Scanner2 and Source

component Source ofType SourceType {
 plug<SourceHandling> sourceHandler;
 attach This.source to This.sourceHandler;
 attach This.accessSource to This.sourceHandler;
 attach This.sourceHandler to new SourceHandling{
 private File sourceFile;
 void setSource(String name){//open sourceFile}
 char getChar(){
 //read next char from sourceFile
}
 };

}

component Compiler2 ofType CompilerType {
 ParserType myParser = new Parser();
 Scanner2Type myScanner = new Scanner2();
 SourceType mySource = new Source();
 connect myParser.getToken to myScanner.token;
 connect myScanner.source to
 mySource.accessSource;
 plug<Sourcefile> setSource;
 connect This.setSource to mySource.source;
 public void main(String[] args)
 { String sourceName = args[1]; new Compiler2();
 This.setSource.setSource(sourceName);
 //start parser via a plug and port not shown

 }}

188 H.A. Schmid and M. Pfeifer

The component Compiler2 (see Figure 6) is identical to Compiler1, except for re-
placing the SourceHanding component fragment by the Source component. It con-
nects the port source of Scanner2 with a connect-statement to the accessSource port
of Source. The plug setSource is declared and connected to the source port of the
Source component with the objective that the main method may invoke via that plug
the setSource-operation of the source port.

7 Dynamic Architectures

The language constructs described so far allow to construct component systems with a
static architecture, i.e. a static hierarchy of collaborating component instances.
Though that is sufficient for a large class of systems, there are other systems which
require a dynamic creation and connection of components.

A component instance may be created dynamically in a method of a component
fragment with a new-operator and component constructor similarly as shown e.g. in
Figure 4. Dynamically created components are connected at run-time with a recon-
nect-statement which is similar to a connect statement. A component should docu-
ment explicitly all kinds of architectural interactions that are permitted between its
subcomponents. To this purpose, a component uses connection patterns (as introduced
by ArchJava [1] [2]) to describe the set of connections that can be made at run-time
using reconnect-statements.

Since in a dynamic architecture, a component may have a variable number of sub-
components of the same type, we introduce component arrays and vectors (as a para-
metric Vector parameterized with a component type). Since it may also be required
that a connection is made from the port of a component to a variable number of sib-
ling components, we introduce port arrays or port vectors as arrays or parameterized
vectors of an interface type. Though the primary emphasis of component and port
arrays resp. vectors is on dynamic architectures, they may be of use also for static
architectures with repetitive elements.

For example, consider a WebServer component. It has one Router and many
Worker subcomponents. The Router receives incoming HTTP-requests and passes
them through a required port of the port array workers to the connected Worker sub-
component that serves the request. The WebServer starts the Router via its provided
port start and the plug start.

Figure 7 shows a shortened version of the WebServer. The running version with
about three times the length of the presented version may be obtained from the au-
thors. We present, in contrast to [1], an optimized solution that reuses idle Worker
instances and their connections. A Worker contains a WorkerThread class. When an
httpRequest is invoked via the serve port of a Worker, the WorkerThread is (re-)
started by a notify-statement and takes up work with a call of its method handleRe-
quest. When it has finished the processing of an HTTP-request, it goes into a wait
state.

The WebServer has declared an array of Worker components. It connects the pro-
vided serve port of each Worker instance after its creation dynamically to the match-
ing port of the required port array workers of the Router component.

 Engineering a Component Language: CompJava 189

The WebServer performs the administration of the Worker instances in the method
block implementing the WorkerAdministration interface, which is attached to the ad-
minWorker plug. It has a setIdle-operation which is invoked by a Worker after having
finished the processing of an HTTP-request, and similar operations. The requestWorker-
operation checks if an idle Worker is available, and returns its index. Otherwise, it creates
a new Worker instance if the maximum worker number is not yet reached, and connects
dynamically the new Worker’s serve port to the matching port of the workers port array
of the Router, and its required adminWorker port to the adminWorker plug.

The WebServer has connected the required request port of the Router to the ad-
minWorker plug. In that way, both the Router and all Worker’s may invoke operations
of the worker administration, like setIdle or requestWorker.

The code of the WebServer component is easy to understand, in contrast to the
code shown in [1].

Worker
Administration

WebServer

Router Worker

serve

RequestIF[]
StartIF

start

start

request

Worker
Administration

«Method Block» adminWorker

admin
WorkerStartIF

Worker
Administration

RequestIF

workers

 interface StartIF {
 void listen();
 }

interface WorkerAdministration {
 void requestWorker();
 void setIdle(int workerId);
 }
 interface RequestIF {
 void httpRequest(InputStream in,
 OutputStream out);
 }

 component type WebServerType { }
 component type RouterType {
 port start provides StartIF;
 port request requires WorkerAdministration;
 port workers requires RequestIF[];
 }
 component type WorkerType {
 port serve provides RequestIF;
 port adminWorker requires WorkerAdministration;
 }
 component WebServer ofType WebServerType {
 final RouterType theRouter = new Router();
 WorkerType[] workers = new WorkerType[10];

 plug<StartIF> start;
 plug<WorkerAdministration> adminWorker;

 connect theRouter.request to This.adminWorker;
 connect This.start to theRouter.start;

 connect pattern RouterType.workers to
 WorkerType.serve;
 connect pattern WorkerType.adminWorker to

Fig. 7. Component WebServer composed from a worker administration component fragment
together with one Router and a variable number of Worker subcomponents

190 H.A. Schmid and M. Pfeifer

 plug<WorkerAdministration>;
 public static void main(String[] args) {
 new WebServer(...).run();
 }
 void run() {
 This.start.listen();
 }
 attach This.adminWorker to WorkerAdministration {
 void setIdle(...) { ...}
 int requestWorker(){
 if(no worker idle & workerID < maxWorkerID){
 workers[workerID] = new Worker(dir, workerID);
 reconnect workers[workerID].adminWorker to
 This.adminWorker;
 reconnect theRouter.workers[workerID] to
 workers[workerID].serve;
 return workerID; }
 //other methods...
 } };
 }
 component Router ofType RouterType {
 //port start provides StartIF;
 //port request requires WorkerAdministration;
 port workers = new RequestIF[10];
 attach This.start to StartIF {
 void listen() {
 ServerSocket server = new
 ServerSocket(This.request.getPort());
 while (true) {
 workerID = This.request.requestWorker();
 Socket sock = server.accept();
 This.workers[workerID].httpRequest(
 sock.getInputStream(),sock.getOutputStream());
 } }};
 }

component Worker ofType WorkerType {
 //port serve provides RequestIF;
 //port adminWorker requires WorkerAdministration;

 WorkerThread myThread = new WorkerThread();
 myThread.start();
 BufferedReader in; // HTTP-request
 PrintWriter out; // HTTP-response

 attach This.serve to RequestIF{
 synchronized void httpRequest(
 InputStream in, OutputStream out){
 this.in = new BufferedReader(new
 InputStreamReader(in));
 this.out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(out)));
 myThread.notify();
 }
 };
 class WorkerThread extends Thread {
 //several data attributes and methods
 protected void handleRequest() {
 // open requested file and send answer ...
 out.println("HTTP/1.0 200 OK");
 // ... and file contents to Browser
 }
 public synchronized void run() {
 while (true) {
 this.wait();
 handleRequest();
 This.adminWorker.setIdle(this.workerNo);
 } }
 } //end WorkerThread
 }

Fig. 7. (Continued)

 Engineering a Component Language: CompJava 191

8 Conclusions

CompJava, available for non-commercial use via www.compjava.org, composes compo-
nents in a clear and simple way from two kinds of building blocks: component fragments
and subcomponents.

We have introduced component fragments that may be considered as very simply
structured lightweight components without ports. There are three implementation
variants covering different performance and reusability requirements. Component
fragments allow to structure low-level components in an adequate way, and they serve
as filters for medium to high level components.

All these building blocks with well-defined and clear interfaces are attached/connected
either directly or via plugs to themselves or to ports of the parent component.

Clean and efficient dynamic architectures are composed from dynamically instantiated
and connected subcomponent instances together with component arrays and port arrays
res. vectors.

The implementation of an instant messaging system [4] has proven that CompJava
scales up to the construction of larger applications in an industrial environment.

CompJava has been extended for use as a distributed component language as de-
scribed in [10].

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to Im-
plementation. In: Procs ICSE (May 2002)

2. Aldrich, J., Chambers, C., Notkin, D.: Architectural Reasoning in Archjava. In: Magnus-
son, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 185–193. Springer, Heidelberg (2002)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

4. Klenk, M.: Entwurf einer Chatapplikation mit der Komponentenprogrammiersprache
CompJava. Diploma thesis, University of Applied Sciences Konstanz (2006)

5. Medvidovic, N., Rosenblum, D.S., Taylor, R.P.: A Language and Environment for Archi-
tecture-Based Software Development and Evolution. In: Procs ICSE 1999 (May 1999)

6. Medvidovic, N., Taylor, R.P.: A Classification and Comparison Framework for Software
Architecture Description Languages (2000)

7. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The KOALA Component
Model for Consumer Electronics Software. IEEE Computer (2000)

8. van Ommering, R.: Building Product Populations with Software Components. In: Proc.
ICSE 2002 (2002)

9. Seco, J.C., Caires, L.: A Basic Model of Typed Components. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, Springer, Heidelberg (2000)

10. Schmid, H.A., Pfeifer, M., Schneider, T.: A Middleware-Independent Model and Lan-
guage for Component Distribution. In: Proc. SEM 2005. ACM Press, New York (2005)

11. Sreedhar, V.C.: Mixin’ Up Components. In: Procs ICSE (2002)
12. Szyperski, C.: Component Software, Beyond Object-Oriented Programming. Addison-

Wesley, Reading (1997)

PART III

Distributed and Parallel Systems

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 195–203, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Quality Model for Grid Portals

Mª Ángeles Moraga1, Coral Calero1, Mario Piattini1, and David Walker2

1 Alarcos Research Group. UCLM-SOLUZIONA Research and Development Institute Uni-
versity of Castilla-La Mancha, Spain

{MariaAngeles.Moraga,Coral.Calero,Mario.Piattini}@uclm.es
2 School of Computer Science. Cardiff University, United Kingdom

David.W.Walker@cs.cardiff.ac.uk

Abstract. Researchers require multiple computing resources when conducting
their computational research; this makes necessary the use of distributed re-
sources. In response to the need for dependable, consistent and pervasive access
to distributed resources, the Grid came into existence. Grid portals subsequently
appeared with the aim of facilitating the use and management of distributed re-
sources. Nowadays, many Grid portals can be found. In addition, users can
change from one Grid portal to another with only a click of a mouse. So, it is
very important that users regularly return to the same Grid portal, since other-
wise the Grid portal might disappear. However, the only mechanism that makes
users return is high quality. Therefore, in this paper and with all the above con-
siderations in mind, we have developed a Grid portal quality model from an ex-
isting portal quality model, namely, PQM. In addition, the model produced has
been applied to two specific Grid portals.

Keywords: Quality models, Grid portals.

1 Introduction

Nowadays, many users have access to, and require, multiple computing resources to con-
duct their computational research [2]. This makes the use of distributed resources neces-
sary. For this reason and with the aim of providing dependable, consistent and pervasive
access to distributed resources, the Grid emerged [11]. The real and specific problem that
underlies the Grid concept is coordinated resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations [5].

Specifically, the Grid couples a wide variety of geographically distributed resources
such as PCs, workstations and clusters, storage systems, data sources, databases and
special purpose scientific instruments and presents them as a unified, integrated re-
source [11].

The main problem with the Grid, however, is the difficulty involved in using grid
resources. That is due to its complex architecture. Therefore, in order for scientists to
use grid resources effectively as a problem solving infrastructure, transparent and
easy-of-use interfaces to the complex set of grid resources are necessary [8]. Nowa-
days, Grid Portals are coming into existence to resolve this problem. They can be
considered as a mechanism for providing user-friendly access to grid resources, and

196 M.Á. Moraga et al.

consistent access patterns, as well as easy usage of grid services. The original objec-
tive of this portal type was to create web-accessible problem-solving environments
(PSEs) that allowed scientists to access distributed resources, and to monitor and exe-
cute distributed Grid applications from a Web browser [12]. Although at the begin-
ning these portals were aimed at researchers, nowadays they can be used by any user
who wants to use distributed resources.

Many Grid portals exist at the present time. An immediate effect of this widespread
presence is the increasing range of resources available at the click of a mouse, that is,
without the user wasting time and money by physically moving from one place to
another [1], [16]. It is because of this that portals must offer a good level of quality,
thus users are attracted to them and come back regularly.

Bearing this in mind, as well as the lack of quality models specifically for Grid
portals, in this paper we present a Grid portal quality model (G-PQM) created from an
existing portal quality model, namely, PQM (Portal Quality Model) [14].

The rest of the paper is organised as follows. In section 2 the quality model for
Grid portals is shown while in section 3 this quality model is applied to two Grid por-
tals. Finally, section 4 concludes and outlines further work.

2 Quality Model for Grid Portals

Grid portals appeared because of the need to make access by researchers to Grid re-
sources easier. The developers of Grid portals seek to ensure that users return to their
portal often. However, the only mechanism that makes users return is high quality
[15]. Therefore, a quality model which is specifically for Grid portals, namely G-
PQM (Grid Portal Quality Model), has been developed. The usefulness of this model
is two-fold. On the one hand, this model helps users to evaluate the different Grid
portals and to choose the one with the highest quality. And on the other hand, the
model’s dimensions can be used as indicators to help developers when building the
portal.

To develop G-PQM a quality model for web portals, namely PQM (Portal Quality
Model), was used as the basis. PQM is composed of six dimensions and seeks to de-
termine the strong and weak points of a specific portal. We can also define corrective
actions for the weaknesses, and improve the quality level of a portal [13]. In order to
adapt this model to Grid portals, some definitions of the dimensions have been modi-
fied and, additionally, some dimensions have been inserted. In Figure 1, we can see
the different phases used in developing the Grid portal quality model, G-PQM.

In our introduction, the first phase “Study of the Grid portals context” was pre-
sented.

2.1 Adaptation of the PQM Dimensions

We have adapted the following PQM dimensions:

• Tangible: This dimension indicates if “the Grid portal contains all the software and
hardware infrastructures needed according to its functionality”.
o Adaptability: ability of the Grid portal to be adapted to different devices (for in-

stance, PDA, PCs, mobile phone, etc.).

 Towards a Quality Model for Grid Portals 197

o Transparent access: ability of the Grid portal to provide access to the Grid re-
sources while isolating the user from their complexity.

• Reliability: It is the “ability of the portal to perform the specified services”. In addi-
tion, this dimension will be affected by:
o Fault tolerance: capability of the Grid portal to maintain a specified level of per-

formance in the event of software faults [9] (for example, a fault during the send-
ing or the execution of a job).

o Availability: The portal must be always operative in order for users to be able to
access it and use its Grid resources anywhere and anytime.

o Search Quality: The results that the portal provides when undertaking a search
must be appropriate to the request made by the user.

Quality in the use of resources: the user can use Grid resources under specified condi-
tions with the portal.

Fig. 1. Phases for the construction of the G-PQM model

• Responsiveness: It is the “willingness of the Grid portal to help and to provide its
functionality in an immediate form to the users”. In this dimension, we note the fol-
lowing sub-dimensions:
o Scalability: This refers to the ability of the portal to adapt smoothly to increasing

workloads coming about as a result of additional users, an increase in traffic vol-
ume or the execution of more complex transactions [7].

o Efficient access: This relates to the response times experienced by portal users [7].
• Empathy: We define this dimension as the “ability of the Grid portal to provide

caring and individual attention”. In this dimension, we observe the following sub-
dimensions:
o Navigation: The Grid portal must provide simple and intuitive navigation when

being used.
o Presentation: The Grid portal must have a clear and uniform interface.
o Integration: All the components of the Grid portal must be integrated in a coherent

form.
o Personalization: The portal must be capable of adapting to the user’s priorities.

• Data and Information Files Quality: This dimension is defined as the “quality of
the data contained in the portal and of the files which specify the available services

198 M.Á. Moraga et al.

in the portal and the names of devices responsible for these services”. According to
Dedeke and Kahn, we can distinguish four different subdimensions [3]:
o Intrinsic: this indicates what degree of care was taken in the creation and prepara-

tion of data/files.
o Representation: this indicates what degree of care was taken in the presentation

and organization of data/files for users.
o Contextual: to what degree the data/files provided meet the needs of the users.
o Accessibility: this indicates what degree of freedom users have to use data, define

and/or refine the manner in which data/files are inputted, processed or presented to
them.

2.2 Inserting New Dimensions

The following dimension has been added:
• Security: This is “the ability of the portal to prevent, reduce and properly respond

to malicious harm” [4]. This dimension will be affected by:
o Access control: capability of the portal to allow access to its resources only to au-

thorized persons. Thus, the portal must be able to identify, authenticate and au-
thorize its users.

o Security control: the capability of the Grid portal to carry out auditing of security
and detect attacks. The auditing of security shows the degree to which security
personnel are enabled to audit the status and use of security mechanisms by ana-
lyzing security-related events. In addition, attack detection seeks to detect, record
and notify attempted attacks as well as successful attacks.

o Confidentiality: Ability to maintain the privacy of the users.
o Integrity: the capability of the portal to protect components (of data, hardware, and

software) from intentional or unauthorized modifications.

2.3 Definitive Model (G-PQM)

Taking into account the dimensions which have been adapted as well as the dimen-
sions that have been introduced, the following model results (Figure 2):

Fig. 2. Characteristics and subcharacteristics of G-PQM

 Towards a Quality Model for Grid Portals 199

3 Applying G-PQM

Having defined G-PQM, the next step is to apply it to some Grid portals with the ob-
jective of determining, on the one hand, the extent to which these portals satisfy the
dimensions identified in the Grid portal quality model; and on the other hand, to iden-
tify possible improvements in the quality of these portals.

In our first approach, G-PQM has been applied to two Grid portals. It should be
noted that we have applied G-PQM from the point of view of the users. G-PQM is,
however, directed at portal developers. For this reason, some of the identified dimen-
sions or sub-dimensions may not be measured (in this case, we will assign the value
“not evaluable” to the (sub) dimension). In spite of this, we can obtain an overall as-
sessment of the quality of these Grid portals.

3.1 GridPort Demo Portal

As a first step, the model has been applied to the GridPort demo portal which is a
fully operational test portal that is intended to serve as a starting point for those inter-
ested in grid portal development (the reader can find more information about this por-
tal at http://gridport.net/main/). This portal has been developed using the GridPort
toolkit which enables the rapid development of highly functional grid portals that
simplify the use of underlying grid services for the end-user [6]. The GridPort demo
portal includes portlets that allow a user to do the following: view static and dynamic
information about the resources in a grid, obtain short-term proxies from a myproxy
server, submit batch jobs to resources on the grid, and browse and transfer files be-
tween resources on the grid [6].

The outcomes obtained are the following:

• Tangible:
o Adaptability: The following software packages are prerequisites to using the

GridPort Demo Portal: JDK 1.4.2, Jakarta Ant 1.6, TomCat, etc. These packages
cannot be installed on all devices.

o Transparent access: GridPort has Grid portlets whose aim is to provide transparent
access to resources.

• Reliability:
o Fault tolerance: Not evaluable.
o Availability: During the testing, the portal was available anywhere and anytime.
o Search Quality: Not applicable because the portal does not have a search engine.
o Quality in the use of resources: Not evaluable.

• Responsiveness:
o Scalability: The portal is not limited to a specific number of users.
o Efficient access: During the testing, the time between the request for a page and

obtaining it was found to be acceptable.
• Security:
o Access control: The portal has mechanisms to identify (asking for username and

password) and authenticate (has GridSphere authentication modules) users. More-
over, it has the capacity to authorize certain users to use certain resources.

o Security control: Not evaluable.

200 M.Á. Moraga et al.

o Confidentiality: Not evaluable.
o Integrity: users cannot carry out unauthorized actions.

• Empathy:
o Navigation: The navigation is simple and intuitive.
o Presentation: The interface is clear and uniform.
o Integration: All the components of the Grid portal appear in a coherent, integrated

form.
o Personalization: The portal can adapt to the user’s priorities.

• Data and information files quality:
o Intrinsic:

 From the point of view of data: Not evaluable.
 From the point of view of information files: Not evaluable.

o Representation:
 From the point of view of data: During the testing, the data were presented in an
organized form.
 From the point of view of information files: Not evaluable.

o Contextual:
 From the point of view of data: the information obtained during the testing satis-
fied our needs.
 From the point of view of information files: Not evaluable.

o Accessibility:
 From the point of view of data: users do not influence the manner in which data
are inputted, processed or presented to them.
 From the point of view of information files: Not evaluable.

We must take into account the fact that we have carried out the assessment from
the point of view of the end user. That being so, we do not have all the necessary data,
so the conclusions obtained from applying G-PQM are not as definitive as they should
be. However, we can see that the main characteristics which must be improved are:
adaptability (because the number of minimum requirements is excessive and this
makes it impossible to adapt the portal to an arbitrary device) and data accessibility
(because users cannot influence the way in which data are inputted, processed or pre-
sented to them). The rest of the characteristics which have been assessed, have given
a favourable result. It would likewise be interesting to obtain more information related
to the portal, for the purpose of detecting other weak points. We could thereby im-
prove portal quality.

3.2 OGCE Portal

Secondly, we have applied the model to the OGCE portal, whose objective is to create
an environment that facilitates the use of Grid resources. The results obtained from
applying G-PQM are:

• Tangible:
o Adaptability: The minimum requirements are: 500 MB free hard-disk space, Pen-

tium III or higher (or a similarly capable processor)_and 128 MB free RAM.

 Towards a Quality Model for Grid Portals 201

o Transparent access: OGCE Port (release 2) has Grid portlets which manage re-
mote files, execute remote commands, etc. Furthermore, this portal has inter-
portlet communication tools that allow portlets to share data.

• Reliability:
o Fault tolerance: Not evaluable.
o Availability: The portal was available anywhere and anytime.
o Search Quality: Not applicable because the portal does not have a search engine.
o Quality in the use of resources: Not evaluable.

• Responsiveness:
o Scalability: The portal is not limited to a specific number of users.
o Efficient access: The response time was very high in some testing, and the request

was not even met in some instances.
• Security:
o Access control: The portal has mechanisms to identify (asking for username and

password) and authenticate (has GridSphere authentication modules) users. More-
over, it has the capacity to authorize certain users to use certain resources.

o Security control: Not evaluable.
o Confidentiality: Not evaluable.
o Integrity: users cannot carry out unauthorized actions.

• Empathy:
o Navigation: The navigation is simple and intuitive.
o Presentation: The interface is clear and uniform.
o Integration: All the components of the OGCE portal are integrated in a coherent

way.
o Personalization: The portal is capable of adapting itself to the user’s priorities.

• Data and information files quality:
o Intrinsic:

 From the point of view of data: Not evaluable.
 From the point of view of information files: Not evaluable.

o Representation:
 From the point of view of data: During the testing, the data were presented in an

organized form.
 From the point of view of information files: Not evaluable.

o Contextual:
 From the point of view of data: the information obtained during the testing satis-
fied our needs.
 From the point of view of information files: Not evaluable.

o Accessibility:
 From the point of view of data: users do not influence the way in which data are
inputted, processed or presented to them.
 From the point of view of information files: Not evaluable.

As with the previous case, we have applied our model from the point of view of the
end user, so there are some dimensions which cannot be assessed. However, taking
into account the dimensions we have assessed, we can see that the following tasks to
improve portal quality could be carried out: reduction of the number of minimum re-
quirements, so as to allow the portal to adapt itself to any device; improvement of the

202 M.Á. Moraga et al.

efficiency of access; and above all, avoidance of a request not obtaining an answer
and elimination of the appearance of a blank screen. On the other hand, we have ob-
tained favourable results for the rest of the characteristics we have assessed. It will
also be of interest to us to obtain information related to the dimensions which have
not been assessed.

4 Conclusions and Future Work

Nowadays, many scientists require the use of the Grid to conduct their computational
research. However, its use is not a trivial task. For this reason, and with the aim of
allowing an easy access to Grid resources via a Web browser interface, Grid portals
have come into existence.

Many different Grid portals can be found at the present time. Therefore, it is easy
for users to move from one Grid portal to another, without the user wasting time and
money. Thus, for users to be attracted to a particular Grid portal and come back regu-
larly, the portal must offer a good level of quality.

Bearing all this in mind, a quality model for Grid portals, namely G-PQM, has
been presented. This model can be used, on the one hand, to assess the quality level of
a specific Grid portal, and on the other hand, to identify its weakness and define cor-
rective actions which improve its level of quality. In addition, this model has been
applied to two grid portals and some corrective actions have been defined in order to
improve their level of quality.

Future work includes the validation of the model characteristics through surveys.
In addition, measures for each one of the characteristics and sub-characteristics must
be identified. Thereby, the G-PQM will be finished.

Acknowledgements

This work was conducted when the first author was in stage at the University of Car-
diff and is part of the CALIPO (TIC 2003-07804-C05-03) and DIMENSIONS (PBC-
05-012-1) projects and the CALIPSO network (TIN2005-24055-E).

References

1. Cox, J., Dale, B.G.: Service quality and e-commerce: an exploratory analysis. Managing
Service Quality 11(2), 121–131 (2001)

2. Dahan, M., Thomas, M., Roberts, E., Seth, A., Urban, T., Walling, D., Boisseau, J.R.: Grid
Portal Toolkit 3.0 (GridPort). In: 13th IEEE International Symposium on High Performan-
ce Distributed Computing (HPDC 2004), pp. 272–273 (2004)

3. Dedeke, A., Kahn, B.: Model-Based quality evaluation: a comparison of Internet classified
operated by newspapers and non-newspaper firms. In: Proceedings of the Seventh Interna-
tional Conference on Information Quality, pp. 142–154 (2002)

4. Firesmith, D.: Specifying Reusable Security Requirements. Journal of Object Technolo-
gy 3(1), 61–75 (2004)

 Towards a Quality Model for Grid Portals 203

5. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid. International J. Super-
computer Applications 15(3), 200–222 (2001)

6. GridPort. Retrieved 2006, from http://gridport.net/main/
7. Gurugé, A.: Corporate Portals Empowered with XML and Web Services. Digital Press,

Amsterdam (2003)
8. He, G., Xu, Z.: Design and Implementation of a Web-based Computational Grid Portal. In:

IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 478–481 (2003)
9. ISO, ISO/IEC 9126. Software Engineering-Product Quality. Parts1 to 4., International Or-

ganization for Standardization/International Electrotechnical Commission (2001)
10. Li, M., Baker, M.: The Grid: Core Technologies, John Willey & Sons England (2005)
11. Li, M., van Santen, P., Walker, D.W., Rana, O.F., Baker, M.A.: PortalLab: A Web Servi-

ces Toolkit for Building Semantic Grid Portals. In: 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGRID 2003), pp. 190–197 (2003)

12. Lin, M., Walker, D.W.: A Portlet Service Model for GECEM. In: Proceedings of the UK
e-Science All Hands Meeting 2004, pp. 687–694 (2004)

13. Moraga, M.Á., Calero, C., Piattini, M.: Applying PQM to a Regional Portal. 5th Conferen-
ce for Quality in Information and Communications Technology. In: Quatic 2004, Porto,
Portugal, pp. 65–70. Instituto Português da Qualidade (2004a)

14. Moraga, M.Á., Calero, C., Piattini, M.: A first proposal of a portal quality model. In: IA-
DIS International Conference. E-society 2004. International association for development
of the information society (iadis), ’Avila, Spain, vol. 1(2), pp. 630–638 (2004b), ISBN:
972-98947-5-2

15. Offutt, A.J.: Quality attributes of web software applications. IEEE Software 19(2), 25–32
(2002)

16. Singh, M.: E-services and their role in B2C e-commerce. Managing Service Quality 12(6),
434–446 (2002)

Algorithmic Skeletons for Branch and Bound

Michael Poldner and Herbert Kuchen

University of Münster, Department of Information Systems
Leonardo Campus 3, D-48149 Münster, Germany

poldner@wi.uni-muenster.de, kuchen@uni-muenster.de

Abstract. Algorithmic skeletons are predefined components for parallel pro-
gramming. We will present a skeleton for branch & bound problems for MIMD
machines with distributed memory. This skeleton is based on a distributed work
pool. We discuss two variants, one with supply-driven work distribution and one
with demand-driven work distribution. This approach is compared to a simple
branch & bound skeleton with a centralized work pool, which has been used in a
previous version of our skeleton library Muesli. Based on experimental results for
two example applications, namely the n-puzzle and the traveling salesman prob-
lem, we show that the distributed work pool is clearly better and enables good
runtimes and in particular scalability. Moreover, we discuss some implementa-
tion aspects such as termination detection as well as overlapping computation
and communication.

Keywords: Parallel Computing, Algorithmic Skeletons, Branch & Bound, Load
Distribution, Termination Detection.

1 Introduction

Today, parallel programming of MIMD machines with distributed memory is mostly
based on message-passing libraries such as MPI [1, 2]. The resulting low programming
level is error-prone and time consuming. Thus, many approaches have been suggested,
which provide a higher level of abstraction and an easier program development. One
such approach is based on so-called algorithmic skeletons [3, 4], i.e. typical patterns
for parallel programming which are often offered to the user as higher-order functions.
By providing application-specific parameters to these functions, the user can adapt an
application independent skeleton to the considered parallel application. (S)he does not
have to worry about low-level implementation details such as sending and receiving
messages. Since the skeletons are efficiently implemented, the resulting parallel appli-
cation can be almost as efficient as one based on low-level message passing.

Algorithmic skeletons can be roughly divided into data parallel and task parallel
ones. Data-parallel skeletons (see e.g. [5, 6, 7, 8, 9, 10]) process a distributed data struc-
ture such as a distributed array or matrix as a whole, e.g. by applying a function to
every element or by rotating or permuting its elements. Task-parallel skeletons [11, 12,
13, 14, 9, 10, 15] construct a system of processes communicating via streams of data.
Such a system is mostly generated by nesting typical building blocks such as farms
and pipelines. In the present paper, we will focus on a particular task-parallel skeleton,
namely a branch & bound skeleton.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 204–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithmic Skeletons for Branch and Bound 205

Branch & bound [16] is a well-known and frequently applied approach to solve cer-
tain optimization problems, among them integer and mixed-integer linear optimization
problems [16] and the well-known traveling salesman problem [17]. Many practically
important but NP-hard planning problems can be formulated as (mixed) integer op-
timization problems, e.g. production planning, crew scheduling, and vehicle routing.
Branch & bound is often the only practically successful approach to solve these prob-
lems exactly. In the sequel we will assume without loss of generality that an optimiza-
tion problem consists of finding a solution value which minimizes an objective function
while observing a system of constraints. The main idea of branch & bound is the fol-
lowing. A problem is recursively divided into subproblems and lower bounds for the
optimal solution of each subproblem are computed. If a solution of a (sub)problem is
found, it is also a solution of the overall problem. Then, all other subproblems can be
discarded, whose corresponding lower bounds are greater than the value of the solution.
Subproblems with smaller lower bounds still have to considered recursively.

Only little related work on algorithmic skeletons for branch & bound can be found
in the literature [18,19,20,13]. However, in the corresponding literature there is no dis-
cussion of different designs. The MaLLBa implementation is based on a master/worker
scheme and it uses a central queue (rather than a heap) for storing problems. The master
distributes problems to workers and receives their solutions and generated subproblems.
On a shared memory machine this approach can work well. We will show in the sequel
that a master/worker approach is less suited to handle branch & bound problems on
distributed memory machines. In a previous version of the Muesli skeleton library, a
branch & bound skeleton with a centralized work pool has bee used, too [14]. Hofstedt
outlines a B&B skeleton with a distributed work pool. Here, work is only shared, if a
local work pool is empty. Thus, worthwhile problems are not propagated quickly and
their investigation is concentrated on a few workers only.

The rest of this paper is structured as follows. In Section 2, we recall, how branch &
bound algorithms can be used to solve optimization problems. In Section 3, we intro-
duce different designs of branch & bound skeletons in the framework of the skeleton
library Muesli [9, 10, 21]. After describing the simple centralized design considered
in [14], we will focus on a design with a distributed work pool. Section 4 contains ex-
perimental results demonstrating the strengths and weaknesses of the different designs.
In Section 5, we conclude and point out future work.

2 Branch and Bound

Branch & bound algorithms are general methods used for solving difficult combinato-
rial optimization problems. In this section, we illustrate the main principles of branch
& bound algorithms using the 8-puzzle, a simplified version of the well-known 15-
puzzle [22], as example. A branch & bound algorithm searches the complete solution
space of a given problem for the best solution. Due to the exponentially increasing
number of feasible solutions, their explicit enumeration is often impossible in practice.
However, the knowledge about the currently best solution, which is called incumbent,
and the use of bounds for the function to be optimized enables the algorithm to search
parts of the solution space only implicitly. During the solution process, a pool of yet

206 M. Poldner and H. Kuchen

Hole

Fig. 1. Upper part of the state-space tree corresponding to an instance of the 8-puzzle and its goal
board

unexplored subsets of the solution space, called the work pool, describes the current
status of the search. Initially there is only one subset, namely the complete solution
space, and the best solution found so far is infinity. The unexplored subsets are repre-
sented as nodes in a dynamically generated search tree, which initially only contains the
root, and each iteration of the branch & bound algorithm processes one such node. This
tree is called the state-space tree. Each node in the state-space tree has associated data,
called its description, which can be used to determine, whether it represents a solution
and whether it has any successors. A branch & bound problem is solved by applying
a small set of basic rules. While the signature of these rules is always the same, the
concrete formulation of the rules is problem dependent. Starting from a given initial
problem, subproblems with pairwise disjoint state spaces are generated using an appro-
priate branching rule. A generated subproblem can be estimated applying a bounding
rule. Using a selection rule, the subproblem to be branched from next is chosen from
the work pool. Last but not least subproblems with non-optimal or inadmissible solu-
tions can be eliminated during the computation using an elimination rule. The sequence
of the application of these rules may vary according to the strategy chosen for selecting
the next node to process [23]. As an example of the branch and bound technique, con-
sider the 8-puzzle [22]. Figure 1 illustrates the goal state of the 8-puzzle and the first
three levels of the state-space tree.

The 8-puzzle consists of eight tiles, numbered 1 through 8, arranged on a 3 × 3
board. Eight positions on the board contain exactly one tile and the remaining position
is empty. The objective of the puzzle is to repeatedly fill the hole with a tile adjacent to
it in horizontal or vertical direction, until the tiles are in row major order. The aim is to
solve the puzzle in the least number of moves.

The branching rule describes, how to split a problem represented by a given initial
board into subproblems represented by the boards resulting after all valid moves. A
minimum number of tile moves needed to solve the puzzle can be estimated by adding
the number of tile moves made so far to the Manhattan distance between the current
position of each tile and its goal position. The computation of this lower bound is de-
scribed by the bounding rule.

Algorithmic Skeletons for Branch and Bound 207

The state-space tree represents all possible boards that can be reached from the initial
board. One way to solve this puzzle is to pursue a breadth first search or a depth first
search of the state-space tree until the sorted board is discovered. However, we can of-
ten reach the goal faster by selecting the node with the best lower bound to branch from.
This selection rule corresponds to a best-first search strategy. Other selection rules such
as a variant of depth-first search are discussed in [23, 24, 25].

Branch & bound algorithms can be parallelized at a low or at a high level. In case of
a low-level parallelization, the sequential algorithm is taken as a starting point and just
the computation of the lower bound, the selection of the subproblem to branch from
next, and/or the application of the elimination rule are performed by several processes
in a data parallel way. The overall behavior of such a parallel algorithm resembles of
the sequential algorithm.

In case of a high-level parallelization, the effects and consequences of the parallelism
are not restricted to a particular part of the algorithm, but influence the algorithm as a
whole. Several iterations of the main loop are performed in a task-parallel way, such
that the state-space tree is explored in a different (non-deterministic!) order than in the
sequential algorithm.

3 Branch and Bound Skeletons

In this section, we will consider different implementation and design issues of branch
& bound skeletons. For the most interesting distributed design, several work distribu-
tion strategies are discussed and compared with respect to scalability, overhead, and
performance. Moreover, a corresponding termination detection algorithm is presented.

A B&B skeleton is based on one or more branch & bound algorithms and offers them
to the user as predefined parallel components. Parallel branch & bound algorithms can
be classified depending on the organization of the work pool. A central, distributed, and
hybrid organization can be distinguished. In the MaLLBa project, a central work pool
is used [19, 20]. Hofstedt [13] sketches a distributed scheme, where work is only dele-
gated, if a local work pool is empty. Shinano et al. [24, 25] and Xu et al. [26] describe
hybrid approaches. A more detailed classification can be found in [27], where also com-
plete and partial knowledge bases, different strategies for the use of knowledge and the
division of work as well as the chosen synchronicity of processes are distinguished.

Moreover, different selection rules can be fixed. Here, we use the classical best-first
strategy. Let us mention that this can be used to simulate other strategies such as the
depth-first approach suggested by Clausen and Perregaard [23]. The bounding function
just has to depend on the depth in the state-space tree.

We will consider the skeletons in the context of the skeleton library Muesli [9,10,21].
Muesli is based on MPI [1, 2] internally in order to inherit its platform independence.

3.1 Design with a Centralized Work Pool Manager

The simplest approach is a kind of the master/worker design as depicted in Figure 2.
The work pool is maintained by the master, which distributes problems to the workers
and receives solutions and subproblems from them. The approach taken in a previous

208 M. Poldner and H. Kuchen

Workpool
initial

problem

Predecessor Successor

solution
optimal

Worker Worker

...
problems

subproblems,
solutions

subproblems,
solutions

Manager
Initial

Filter Filter

Final

B&B

Fig. 2. Branch & bound skeleton with centralized work pool manager

version of the skeleton library Muesli is based on this centralized design. When a worker
receives a problem, it either solves it or decomposes it into subproblems and computes a
lower bound for each of the subproblems. The work pool is organized as a heap, and the
subproblem with the best lower bound at the time is stored in its root. Idle workers are
served with new problems taken from the root. This selection rule implicitly implements
a best-first search strategy. Subproblems are discarded, if their bounds indicate that they
cannot produce better solutions than the best known solution. An optimal solution is
found, if the master has received a solution, which is better than all the bounds of all
the problems in its work pool and no worker currently processes a subproblem. If at
least one worker is processing, it can lead to a new incumbent. When the execution is
finished, the optimal solution is sent to the master’s successor in the overall process
topology 1 and the skeleton is ready to accept and solve the next optimization problem.
The code fragment in Fig. 3 illustrates the application of our skeleton in the context of
the Muesli library. It constructs the process topology shown in Fig. 2.

int main(int argc, char* argv[]) {
InitSkeletons(argc,argv);
// step 1: create a process topology
Initial<Problem> initial(generateProblem);
Filter<Problem,Problem> filter(generateCases,1);
BranchAndBound<Problem> bnb(filter,n,

betterThan,isSolution);
Final<Problem> final(fin);
Pipe pipe(initial,bnb,final);
// step 2: start process topology
pipe.start();
TerminateSkeletons();

}

Fig. 3. Example application using a branch and bound skeleton with centralized work pool man-
ager

1 Remember that task-parallel skeletons can be nested.

Algorithmic Skeletons for Branch and Bound 209

In a first step the process topology is created using C++ constructors. The pro-
cess topology consists of an initial process, a branch & bound process, and a final
process connected by a pipeline skeleton. The initial process is parameterized with a
generateProblem method returning the initial optimization problem that is to be
solved. The filter process represents a worker. The passed function generateCases
describes, how to branch & bound subproblems. The constructor BranchAndBound
produces n copies of the worker and connects them to the internal work pool manager
(which is not visible to the user). bool betterThan(Problem x1, Problem
x2) has to deliver true, iff the lower (upper) bound for the best solution of problem
x1 is better than the lower (upper) bound for the best solution of problem x2 in case of
a minimization (maximization) problem. This function is used internally for the work
pool organization. The function bool isSolution(Problem x) can be used to
discover, whether its argument x is a solution or not. The final process receives and
processes the optimal solution. Problems and solutions are encoded by the same type
Problem.

The advantage of a single central work pool maintained by the master is that it pro-
vides a good overall picture of the work still to be done. This makes it easy to provide
each worker with a good subproblem to branch from and to prune the work pool. More-
over, the termination of the workers is easy to implement, because the master knows
about all idle workers at any time, and the best solution can be detected easily. The
disadvantage is that accessing the work pool tends to be a bottleneck, as the work pool
can only be accessed by one worker at a time. This may result in high idle times on
the workers’ site. Another disadvantage is that the master/worker approach incurs high
communication costs, since each subproblem is sent from its producer to the master
and propagated to its processing worker. If the master decides to eliminate a received
subproblem, time is wasted for its transmission. Moreover, the communication time re-
quired to send a problem to a worker and to receive in return some subproblems may be
greater than the time needed to do the computation locally. The master’s limited mem-
ory capacity for maintaining the work pool is another disadvantage of this architecture.

As we will see in the next subsection, these disadvantages can be avoided by a dis-
tributed maintenance of the work pool. However, this design requires a suitable scheme
for distributing subproblems and some distributed termination detection.

3.2 Distributed Work Pool

Figure 5 illustrates the design of the distributed branch and bound (DBB) skeleton pro-
vided by the Muesli skeleton library. It consists of a set of peer solvers, which exchange
problems, solutions, and (possibly) load information. Several topologies for connect-
ing the solvers are possible. For small numbers of processors, a ring topology can be
used, since it enables an easy termination detection. For larger numbers of processors,
topologies like torus or hypercube may lead to a faster propagation of work from hot
spots to idle processors. For simplicity, we will assume a ring topology in the sequel.
Compared to more complicated topologies the ring also simplifies the dynamic adap-
tion of the number of workers in case that more or less computation capacity has to be
devoted to the branch & bound skeleton within the overall computation. This (not yet
implemented) feature will enable a well-balanced overall computation.

210 M. Poldner and H. Kuchen

In our example, n = 5 solvers are used. Each solver maintains its own local work
pool and has one entrance and one exit. Exactly one of the solvers, called the master
solver, serves as an entrance to the DBB-skeleton and receives new optimization prob-
lems from the predecessor. Any of the n solvers may deliver the detected optimal so-
lution to the successor of the branch & bound skeleton in the overall process topology.
All solvers know each other for a fast distribution of newly detected best solutions2.
If the skeleton only consists of a single solver neither communication nor distributed
termination detection are necessary. In this case all communication parts as well as the
distributed termination detection algorithm are bypassed to speed up the computation.

The code fragment in Fig. 4 shows an example application of our distributed B&B
skeleton. It constructs the process topology depicted in Fig. 5. Work request messages
are only sent when using a demand-driven work distribution.

int main(int argc, char* argv) {
InitSkeletons(argc,argv);
// step 1: create a process topology
Initial<Problem> initial(generateProblem);
BBSolver<Problem> solver("ring",branch,bound,

betterThan,isSolution);
DistributedBB<Problem> bnb =

DistributedBB<Problem>(solver,n);
Final<Problem> final(fin);
Pipe pipe(initial,bnb,final);
// step 2: start process topology
pipe.start();
TerminateSkeletons();

}

Fig. 4. Task parallel example application of a fully distributed Branch and Bound skeleton

The construction of the process topology resembles that in the previous example.
Instead of a filter a BBSolver process is used as a worker. In addition to the better
Than and isSolution function two other argument functions are passed to the con-
structor, namely a branch and a bound function. The constructor DistributedBB
produces n copies of the solver. One of the solvers is automatically chosen as the master
solver.

As described in the previous section, a task-parallel skeleton consumes a stream of
input values and produces a stream of output values. If the master solver receives a new
optimization problem, the communication with the predecessor is blocked until the re-
ceived problem is solved. This ensures that the skeleton processes only one optimization
problem at a time. There are different variants for the initialization of parallel branch &
bound algorithms with the objective of providing each worker with a certain amount of
work within the start-up phase. Ideally, the work load is distributed equally to all work-
ers. However, the work load is hard to predict without any domain knowledge. For this
reason the skeleton uses the most common approach, namely root initialization, i.e. the

2 Thus, the topology is in fact a kind of wheel with spokes rather than a ring.

Algorithmic Skeletons for Branch and Bound 211

...

problems +
termination
detection

BBSolver

BBSolver BBSolver

BBSolver

Initial BBSolver Final

Predecessor

Master Solver

B&B with distributed work pool

Worker

Successor

work requests

incumbents

initial
problem

optimal
solution

Fig. 5. Branch & bound skeleton with distributed work pool

root of the state space tree is inserted into the local work pool of the master solver. Sub-
problems are distributed according to the load balancing scheme applied by the solvers.
This initialization has the advantage that it is very easy to implement and no additional
code is necessary. Other initialization strategies are discussed in the literature. A good
survey can be found in [28].

Each worker repeatedly executes two phases: a communication phase and a solution
phase. Let us first consider the communication phase. In order to avoid that computa-
tion time is wasted with the solution of irrelevant subproblems, it is essential to spread
and process new best solutions as quickly as possible. For this reason, we distinguish
problem messages and incumbent messages. Each solver first checks for arriving in-
cumbents with MPI Testsome. If it has received new incumbents, the solver stores the
best and discards the others. Moreover, it removes subproblems whose lower bound is
worse than the incumbent from the work pool. Then, it checks for arriving subproblems
and stores them in the work pool, if their lower bounds are better than the incumbent.

The solution phase starts with selecting an unexamined subproblem from the work
pool. As in the master/worker design, the work pool is organized as a heap and the selec-
tion rule implements a best-first search strategy. The selected problem is decomposed
into m subproblems by applying branch. For each of the subproblems, we proceed
as follows. First, we check, whether it is solved. If a new best solution is detected, we
update the local incumbent and broadcast it. A worse solution is discarded. Finally, if
the subproblem is not yet solved, the bound function is applied and the subproblem is
stored in the work pool (see Fig. 5).

3.3 Load Distribution and Knowledge Sharing

Since the work pools of the different solvers, grow and shrink differently, some load
balancing mechanism is required. Many global and local load distribution schemes have
been studied in the literature [29, 30, 31, 32, 33, 34] and many of them are suited in the
context of a distributed branch & bound skeleton. Here, we will focus on two local load
balancing schemes, a supply- and a demand-driven one. The local schemes avoid the

212 M. Poldner and H. Kuchen

larger overhead of a global scheme. On the other hand, they need more time to distribute
work over long distances.

With the simple supply-driven scheme, each worker sends in each ith iteration its
second best problem to its right neighbor in the ring topology. It always processes the
best problem itself, in order to avoid communication overhead compared to the sequen-
tial algorithm. The supply driven approach has the advantage that it distributes work
slightly more quickly than a demand driven approach, since there is no need for work
requests. This may be beneficial in the beginning of the computation. A major disadvan-
tage of this approach is that many subproblems are transmitted in vain, since they will
be sooner or later discarded at their destination due to better incumbents, in particular
for small i. Thus, high communication costs are caused.

The demand-driven approach distributes load only in case that a neighbor requests
it. In our case, a neighbor sends the lower bound of the best problem in its work pool
(see Fig. 5). If this value is worse than the lower bound of the second best problem of
the worker receiving this information, it is interpreted as a work request and a problem
is transmitted to the neighbor. In case that the work pool of the neighbor is empty, the
information message indicates this fact rather than transmitting a lower bound. An in-
formation message is sent every ith iteration of the main loop. In order to avoid flooding
the network with ”empty work pool” messages, such messages are never sent twice. If
the receiver of an “empty work pool message” is idle, too, it stores this request and
serves it as soon as possible. The advantage of this algorithm is that distributing load
only occurs, if it is necessary and beneficial. The overhead of sending load information
messages is very low due to their small sizes. For small i the overhead is bigger, but
idle processors get work more quickly.

3.4 Termination Detection

In the distributed setting, it is harder to detect that the computation has finished and
the optimal solution has been found. The termination detection algorithm used in the
DBB-skeleton is a variant of Dijkstra’s algorithm outlined in [22]. Our implementation
utilizes the specific property of MPI that the order in which messages are received from
a sender S is always equal to the order in which they were sent by S. This character-
istic can be used for the purpose of termination detection in connection with local load
distribution strategies as described above.

As mentioned, we arrange the workers in a ring topology, since this renders the
termination detection particularly easy and simplifies the dynamic addition and removal
of workers. For a small number of processors (as in our system), the large diameter of
the ring topology is no serious problem for the distribution of work.

Let n be the number of solvers of the DBB-skeleton. When the master solver receives
a new optimization problem, it initializes the termination detection by sending a token
along the ring in the same direction as the load is distributed. The token only consists of
an int value. Initially, the token has the value n. If a solver receives a new subproblem,
this event is noted by setting a flag to true. On arrival of a token the solver uses the
rules stated by the following pseudo code:

Algorithmic Skeletons for Branch and Bound 213

IF (workpool is empty AND flag == false)
token := token - 1;

IF (workpool is not empty OR flag == true) {
token := n; flag := false; }

IF (token > 0) send token to successor;
IF (token == 0) computation is finished;

Only if all workers are idle, the token is decremented by every worker and the com-
putation is finished. No more problems can be in the network, since the token cannot
overtake other messages on its way. Note that this algorithm only works for load bal-
ancing strategies which send load in the same direction as the token.

4 Experimental Results

We have tested the different versions of the branch & bound skeleton experimentally on
a IBM workstation cluster [35] using up to 16 Intel Xeon EM64T processors with 3.6
GHz, 1 MB L2 Cache, and 4 GB memory, connected by a Myrinet [36]. As example
applications we have considered the n-puzzle as explained in section 2 as well as a
parallel version of the traveling salesman problem (TSP) algorithm by Little et al. [17].
Both differ w.r.t. the quality of their bounding functions and hence in the number of
considered irrelevant subproblems.

The presented B&B algorithm for the n-puzzle has a rather bad bounding function
based on the Manhattan distance of each tile to its destination. It is bad, since the com-
puted lower bounds are often much below the value of the best solution. As a conse-
quence, the best-first search strategy is not very effective and the number of problems
considered by the parallel skeleton differs enormously over several runs with the same
inputs. This number largely depends on the fact whether a subproblem leading to the
optimal solution is picked up early or late. Note that the parallel algorithm behaves non-
deterministically in the way the search-space tree is explored. In order to get reliable
results, we have repeated each run 100 times and computed the average runtimes.

0

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14

#workers

centralized workpool

distributed workpool, supply driven work
distribution
distributed workpool, demand driven work
distribution

Fig. 6. Runtimes for the 16 city TSP using the central work pool manager and the distributed work
pool with supply- and demand-driven work distribution depending on the number of workers

214 M. Poldner and H. Kuchen

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

1 2 3 4 5 6 7 8
#workers

distrributed workpool, demand
driven work distribution

linear speedup

Fig. 7. Speedups for the 30 city TSP using the distributed work pool with demand-driven work
distribution depending on the number of workers. The speedups are the averages taken from 300
runs with different, randomly generated maps.

The goal of the TSP is to find the shortest round trip through n cities. Little’s algo-
rithm represents each problem by its residual adjacency matrix, a set of chosen edges
representing a partially completed tour, and a lower bound on the length of any full tour,
which can be generated by extending the given partial tour. New problems are produced
by selecting a key edge and generating two new problems, in which the chosen edge is
included and excluded from the emerging tour, respectively. The key edge is selected
based on the impact that the exclusion of the edge will have on the lower bound. The
lower bounds are computed based on the fact that each city has to be entered and left
once and that consequently one value in every row and column of the adjacency matrix
has to be picked. The processing of a problem mainly requires three passes through the
adjacency matrix.

The TSP algorithm computes rather precise lower bounds. Thus, the best-first strat-
egy works fine, and the parallel implementation based on Quinn’s formulation of the
algorithm [22] considers only very few problems more than the sequential algorithm,
as explained below.

Consequently, the runtimes were relatively similar over several runs with the same
parameters. For the TSP, we have used a real world 16 city map taken and adapted
from [37] and 300 randomly generated 30 city maps. The real world map has much more
sub-tours with similar lengths. Thus, proportionally more subproblems are processed
which do not lead to the optimal solution than for the artificial map, where the best
solution is found more easily.

Table 1. Distribution of problems for the 16 city TSP using a distributed work pool and demand
driven work distribution

considered problems
#workers runtime worker

(s) total 1 2 3 4 5 6 7 8
1 10.38 263019 263019
2 5.54 274002 139922 134080
3 3.52 263583 90783 86039 86761
4 2.64 262794 66536 65141 65475 65642
5 2.10 273175 55863 52386 55993 53878 55055
6 1.74 270525 45916 45150 44938 45574 42638 46309
7 1.52 263180 39495 38749 37492 37197 37134 36273 36840
8 1.35 265698 34196 33763 33525 32793 32424 32466 32231 34300

Algorithmic Skeletons for Branch and Bound 215

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

1 2 3 4 5 6 7 8
#workers

centralized workpool

distributed workpool, demand
driven work distribution

Fig. 8. Speedups for 24-puzzle using the central work pool manager and the distributed work pool
with demand-driven work distribution depending on the number of workers

Table 2. Distribution of problems for the 16 city TSP using a distributed work pool and supply
driven work distribution

considered problems
#workers runtime worker

(s) total 1 2 3 4 5 6 7 8
1 10.38 263019 263019
2 5.84 262522 162536 99986
3 3.92 271179 93060 89886 88233
4 2.91 269021 66004 67709 66572 68736
5 2.32 271717 53161 54569 55420 55074 53493
6 2.03 265100 43227 47420 47739 42342 42185 42187
7 1.75 265862 34390 34701 35100 36693 37917 51595 35466
8 1.35 264509 44379 32157 29789 29228 30017 31704 33124 34111

When comparing the supply- and the demand-driven approach (see Figure 6 and the
3rd columns of Tables 1, 2), we notice that, as expected, the demand driven scheme is
better, since it produces less communication overhead. The fact that the problems are
distributed slightly slower causes no serious performance penalty.

For the supply driven scheme, we have used an optimal number i for the amount of
iterations that a worker waits before delegating a problem to a neighbor. If i is chosen
too large, important problems will not spread out fast enough. If i is too small, the com-
munication overhead will be too large. We found that the optimal value for i depends
on the application problem and on the number of workers. If the number of workers
increases, i has to be increased as well. In our experiments, the optimal values for i
were ranging between 2 and 20 for up to 8 workers.

Table 3. Distribution of problems for the 16 city TSP using a central work pool manager

considered problems
#workers runtime worker

(s) total 1 2 3 4 5 6 7 8
1 22.01 263018 263018
2 12.74 267057 133808 133249
3 11.41 267019 116339 104349 46331
4 11.26 267030 115396 103522 45945 2167
5 11.26 267039 116064 103735 45406 1712 106
6 11.25 267199 116082 103679 45470 1791 123 54
7 11.26 267050 114111 103167 46558 2767 319 89 39
8 11.25 267024 115671 103675 45227 2071 226 81 45 28

216 M. Poldner and H. Kuchen

As expected, we see that for the centralized B&B skeleton the work pool manager
quickly becomes a bottleneck and it has difficulties to keep more than 2 workers busy
(see Figures 6, 8 and Table 3). This is due to the fact that the amount of computations
done for a problem is linear in the size of the problem, just as the communication
complexity for sending and receiving a problem. Thus, relatively little is gained by
delegating a problem to a worker. The work pool manager has to spend only little work
less for transmitting the problem than its processing would require. This property is
typical for virtually all practically relevant branch & bound problems we are aware of.
It has the important consequence that a centralized work pool manager does not work
well for branch & bound on distributed memory machines. Also note that the centralized
scheme needs one more processor, the work pool manager, than the distributed one
rendering this approach even less attractive.

Both variants of the design with a distributed work pool do not have these draw-
backs (see Figures 6, 7, 8 and Tables 1, 2). Here, the communication overhead is much
smaller. Each worker fetches most problems from its own work pool, such that they
require no communication. This is particularly true for the demand driven approach.
This scheme has the advantage that after some start-up phase, in which all workers are
supplied with problems, there is relatively little communication and the workers mainly
process locally available problems. This is essential for achieving good runtimes and
speedups. We anticipate that this insight not only applies to branch & bound but also to
other skeletons with a similar characteristic such as divide & conquer and other search
skeletons. We are currently working on experimental results supporting this claim.

Interestingly we could even observe slightly superlinear speedups for the 30 city
TSPs. They can be explained by the fact that a parallel B&B algorithm may tackle
important subproblems earlier than the sequential one, since it processes the state-space
tree in a different order [38].

It is clear that a parallel B&B algorithm will typically consider more problems than
a corresponding sequential one, since it eagerly processes several problems in parallel,
which would be discarded in the sequential case, since their lower bounds are worse
than a detected solution. Interestingly for both considered example applications, TSP
and n-puzzle, the corresponding overhead was very small and only few additional prob-
lems have been processed by the parallel implementation (see the 3rd columns of Tables
1, 2, 3). For instance, for the 16 city TSP no more than 274002 − 263019 = 10983 ad-
ditional problems are processed by the parallel algorithm; this is less than 4.2 %. This
is essential for achieving reasonable speedups.

As an implementation detail of the centralized approach let us mention that it is
important that the work pool manager receives in each iteration all available subprob-
lems and solutions from the workers rather than just one of them. The reason is that
MPI Waitany (used internally) is unfair and that an overloaded work pool manager will
hence almost exclusively communicate with a small number of workers. If a starving
worker has an important subproblem (one that leads to the optimal solution) or a good
solution, which it is not able to deliver to the work pool manager, this will cause very
bad runtimes.

Another implementation detail of the centralized approach concerns the amount of
buffering. In order to be able to overlap computation and communication, it is a good

Algorithmic Skeletons for Branch and Bound 217

idea that the work pool manager not only sends one problem to each worker and then
waits for the results, but that it sends m problems such that the worker can directly
tackle the next problem after finishing the previous one. Here it turned out that one has
to be careful not to choose m too large, since then problems which would otherwise
be discarded due to appearing better incumbents will be processed (in vain). In our
experiments, m = 2 was a good choice.

5 Conclusions

We have considered two different implementation schemes for the branch & bound
skeleton. Besides a simple approach with a central work pool manager, we have inves-
tigated a scheme with a distributed work pool. As our analysis and experimental results
show, the communication overhead is high for the centralized approach and the work
pool manager quickly becomes a bottleneck, in particular, if the number of computation
steps for each problem grows linearly with the problem size, as it is the case for vir-
tually all practically relevant branch & bound problems. Thus, the centralized scheme
does not work well in practice.

On the other hand, our scheme with a distributed work pool works fine and provides
good runtimes and scalability. The latter is not trivial, as discussed e.g. in the book
of Quinn [22], since parallel B&B algorithms tend to process an increasing number of
irrelevant problems the more processors are employed. In particular, the demand-driven
design works well due to its low communication overhead.

For the supply-driven approach, we have investigated, how often a problem should
be propagated to a neighbor. Depending on the application and the number of workers,
we have observed the best runtimes, if a problem was delegated between every 2nd and
every 20th iteration.

We are not aware of any previous comparison of different implementation schemes
of branch & bound skeletons for MIMD machines with distributed memory in the lit-
erature. In the MaLLBa project [18, 19], a branch & bound skeleton based on a mas-
ter/worker approach and a queue for storing subproblems has been developed. But as
we pointed out above, this scheme is more suitable for shared memory machines than
for distributed memory machines. Hofstedt [13] sketches a B&B skeleton with a dis-
tributed work pool. Here, work is only delegated, if a local work pool is empty. A quick
propagation of “interesting” subproblems are missing. According to our experience,
this leads to a suboptimal behavior. Moreover, Hofstedt gives only few experimental
results based on reduction steps in a functional programming setting rather than actual
runtimes and speedups.

As future work, we intend to investigate alternative implementation schemes of
skeletons for other search algorithms and for divide & conquer.

References

1. Gropp, W., Lusk, E., Skjellum, A.: Using MPI. MIT Press, Cambridge (1999)
2. MPI: Message passing interface forum, mpi. In: MPI: A Message-Passing Interface Standard

(2006),
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

218 M. Poldner and H. Kuchen

3. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press, Cambridge (1989)

4. Cole, M.: The skeletal parallelism web page (2006),
http://homepages.inf.ed.ac.uk/mic/Skeletons/

5. Bisseling, I.F.R.: Mondriaan sparse matrix partitioning for attacking cryptosystems – a case
study. In: Proceedings of ParCo 2005, Malaga (to appear, 2005)

6. Botorog, G.H., Kuchen, H.: Efficient parallel programming with algorithmic skeletons. In:
Fraigniaud, P., Mignotte, A., Bougé, L., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1123,
pp. 718–731. Springer, Heidelberg (1996)

7. Botorog, G.H., Kuchen, H.: Efficient high-level parallel programming. Theoretical Computer
Science 196, 71–107 (1998)

8. Kuchen, H., Plasmeijer, R., Stoltze, H.: Efficient distributed memory implementation of a
data parallel functional language. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodor-
idis, S. (eds.) PARLE 1994. LNCS, vol. 817, Springer, Heidelberg (1994)

9. Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS,
vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

10. Kuchen, H.: Optimizing sequences of skeleton calls. In: Lengauer, C., Batory, D., Consel,
C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 254–
273. Springer, Heidelberg (2004)

11. Benoit, A., Cole, M., Hillston, J., Gilmore, S.: Flexible skeletal programming with eskel. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 761–770. Springer,
Heidelberg (2005)

12. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel
programming. Parallel Computing 30(3), 389–406 (2004)

13. Hofstedt, P.: Task parallel skeletons for irregularly structured problems. In: Pritchard, D.,
Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 676–681. Springer, Heidelberg
(1998)

14. Kuchen, H., Cole, M.: The integration of task and data parallel skeletons. Parallel Processing
Letters 12(2), 141–155 (2002)

15. Pelagatti, S.: Task and data parallelism in p3l. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and
Skeletons for Parallel and Distributed Computing, pp. 155–186. Springer, Heidelberg (2003)

16. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley, Chichester
(1999)

17. Little, J.D.C., Murty, K.G., Sweeny, D.W., Karel, C.: An algorithm for the traveling salesman
problem. Operations Research 11, 972–989 (1963)

18. Alba, E., Almeida, F., et al.: Mallba: A library of skeletons for combinatorial search. In:
Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932. Springer,
Heidelberg (2002)

19. Almeida, F., Dorta, I., et al.: Mallba: Branch and bound paradigm. In: Technical Report DT-
01-2, University of La Laguna, Spain, Dpto. Estadistica, I.O. y Computacion (2001)

20. Dorta, I., Leon, C., Rodriguez, C., Rojas, A.: Parallel skeletons for divide and conquer and
branch and bound techniques. In: Proc. 11th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP2003) (2003)

21. Kuchen, H.: The skeleton library web pages (2006), http://www.wi.uni-
muenster.de/PI/forschung/Skeletons/index.php

22. Quinn, M.J.: Parallel Computing: Theory and Practice. McGraw-Hill, New York (1994)
23. Clausen, J., Perregaard, M.: On the best search strategy in parallel branch-and-bound: Best-

first search versus lazy depth-first search search. Annals of Operations Research 90, 1–17
(1999)

http://homepages.inf.ed.ac.uk/mic/Skeletons/
http://www.wi.uni-muenster.de/PI/forschung/Skeletons/index.php
http://www.wi.uni-muenster.de/PI/forschung/Skeletons/index.php

Algorithmic Skeletons for Branch and Bound 219

24. Shinano, Y., Higaki, M., Hirabayashi, R.: A generalized utility for parallel branch and bound
algorithms. In: Proc. 7th IEEE Symposium on Parallel and Distributed Processing, pp. 392–
401. IEEE Computer Society Press, Los Alamitos (1995)

25. Shinano, Y., Higaki, M., Hirabayashi, R.: Control schemes in a generalized utility for parallel
branch and bound algorithms. In: Proc. 11th International Parallel Processing Symposium,
pp. 621–627. IEEE, Los Alamitos (1997)

26. Xu, Y., Ralphs, T., Ladyi, L., Salzman, M.: Alps: A framework for implementing parallel
tree search algorithms. In: Proc. 9th INFORMS Computing Society Conference (2005)

27. Trienekens, H.: Parallel branch & bound algorithms. PhD Thesis, University of Rotterdam
(1990)

28. Henrich, D.: Initialization of parallel branch-and-bound algorithms. In: Proc. 2nd Interna-
tional Workshop on Parallel Processing for Artificial Intelligence (PPAI-1993). Elsevier, Am-
sterdam (1994)

29. Henrich, D.: Local load balancing for data-parallel branch-and-bound. In: Proc. Massively
Parallel Processing Applications and Development, pp. 227–234 (1994)

30. Henrich, D.: Lastverteilung fuer feinkoernig parallelisiertes branch-and-bound. PhD Thesis,
TH Karlsruhe (1995)

31. Lüling, R., Monien, B.: Load balancing for distributed branch and bound algorithms. In:
Proc. 6th International Parallel Processing Symposium (IPPS 1992), pp. 543–549. IEEE,
Los Alamitos (1992)

32. Mahapatra, N., Dutt, S.: Adaptive quality equalizing: High-performance load balancing for
parallel branch-and-bound across applications and computing systems. In: Proc. International
Parallel Processing and Distributed Processing Symposium (IPDPS 1998) (1998)

33. Sanders, P.: Tree shaped computations as a model for parallel applications. In: Proc. Work-
shop on Application Based Load Balancing (ALV 1998), TU Munich (1998)

34. Shina, A., Kalé, L.: A load balancing strategy for prioritized execution of tasks. In: Lehrmann
Madsen, O. (ed.) ECOOP 1992. LNCS, vol. 615, Springer, Heidelberg (1992)

35. ZIV: Ziv-cluster (2006), http://zivcluster.uni-muenster.de/
36. Myricom: The myricom homepage (2006), http://www.myri.com/
37. Reinelt, G.: Tsplib – a traveling salesman problem library. ORSA Journal on Computing 3,

376–384 (1991),
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/

38. Lai, T., S.S.: Anomalies in parallel branch-and-bound algorithms. Communications of the
ACM 27, 594–602 (1984)

http://zivcluster.uni-muenster.de/
http://www.myri.com/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

A Hybrid Topology Architecture for
P2P File Sharing Systems

J.P. Muñoz-Gea, J. Malgosa-Sanahuja, P. Manzanares-Lopez,
J.C. Sanchez-Aarnoutse, and A.M. Guirado-Puerta

Department of Information Technologies and Communications
Polytechnic University of Cartagena, Campus Muralla del Mar, 30202, Cartagena, Spain

{juanp.gea,josem.malgosa,pilar.manzanares,juanc.sanchez
antonio.guirado}@upct.es

Abstract. Over the Internet today, there has been much interest in emerging
Peer-to-Peer (P2P) networks because they provide a good substrate for creat-
ing data sharing, content distribution, and application layer multicast applica-
tions. There are two classes of P2P overlay networks: structured and unstruc-
tured. Structured networks can efficiently locate items, but the searching process
is not user friendly. Conversely, unstructured networks have efficient mechanisms
to search for a content, but the lookup process does not take advantage of the dis-
tributed system nature. In this paper, we propose a hybrid structured and unstruc-
tured topology in order to take advantages of both kind of networks. In addition,
our proposal guarantees that if a content is at any place in the network, it will be
reachable with probability one. Simulation results show that the behaviour of the
network is stable and that the network distributes the contents efficiently to avoid
network congestion.

Keywords: Peer-to-peer, structured networks, unstructured networks, application
layer multicast.

1 Introduction

The main characteristic of an overlay network is that all the computer terminals that
shape it are organized defining a new network structure overlayed to the existent one.
They are purely distributed systems, and can be used in a lot of interesting fields: for
example, to transmit multicast traffic in a unicast network (like Internet), technique
known as Application Layer Multicast (ALM). However, the most popular overlay net-
works are peer-to-peer (P2P) networks, commonly used to efficiently download large
amounts of information. In this last scenario there are two types of P2P overlay net-
works: structured and unstructured.

The technical meaning of structured is that the P2P overlay network topology is
tightly controlled. Such structured P2P systems have a property that consistently assigns
uniform random NodeIDs to the set of peers into a large space of identifiers. With this
identifier, the overlay network places the terminal in a specific position into a graph. On
the other hand, in unstructured P2P networks the terminals are located in the overlay
network by one (or several) rendez-vous terminals with network management functions.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 220–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hybrid Topology Architecture for P2P File Sharing Systems 221

Although unstructured P2P networks require the presence of one controller (rendez-
vous) at least, they have the advantage that the information searching process supports
complex queries (it is a similar methodology to that used to search for information
in Google and supports keyword and phrases searching). That does not happen when
the P2P network is structured. In this case the advantages are that it enables efficient
discovery of data items and it doesn’t require any central controller. In addition, it is
also much easier to reorganize when changes occur (registering and leaving terminals)
and, consequently, the overlay network is more scalable and robust. Section 2 describes
in depth the searching and location process of structured and unstructured networks.

In this work we try to design a file-sharing system that shares the advantages of
both types of P2P networks. The users locate the contents in an unstructured way. If
this search fails, the system will use an application layer multicast service (given by a
structured P2P network), to locate the terminal that owns the searched information. It
is necessary to remark that, with the system proposed in this work, the location of any
existing content always success.

There are several proposals that try to support sophisticated search requirements, like
[1][2][3]. These proposals organize P2P overlays into a hierarchy, and they have a high
degree of complexity.

The remainder of the paper is organized as follows: Section 2 describes the main
characteristics of both, unstructured and structured networks. Section 3 describes the
system proposed in this paper in detail. Section 4 summarizes the more relevant con-
tributions of the proposed solution. Section 5 shows the simulation results and finally,
Section 6 concludes the paper.

2 P2P Overlay Networks

The topology in a P2P structured overlay network is algorithmly fixed. Both, the nodes
and the contents, have assigned an identifier (NodeID and Key respectively) belonging
to the same scope. These P2P systems use a hash function applied to a MAC or IP
terminal address and to the data content respectively, to generate these identifiers. The
overlay network organizes its peers into a graph that maps each data Key to a peer,
so that content is placed not at random peers but at specified locations. This structured
graph enables efficient discovery of data items using the given Keys: a lookup algorithm
is defined and it is responsible for locating the content, knowing its identifier only.
However, in its simple form, this class of systems does not support complex queries.
They only support exact-match lookups: one needs to know the exact Key of a data
item to locate the node(s) responsible for storing that item. In practice, however, P2P
users often have only partial information for identifying these items and tend to submit
broad queries (e.g., all the articles written by ”John Smith”) [4]. Some examples of P2P
structured networks are: CAN, Chord, Tapestry, Kademlia and Viceroy [5], [6], [7].

Unstructured P2P networks are composed of nodes that are linked to the network
without any previous knowledge of the topology. The terminals need to know before-
hand the location of a central controller, also denoted rendez-vous point, responsible
for including them within the overlay network and for storing their contents list. The
overlay networks organize peers in a random graph in a flat or hierarchical manner

222 J.P. Muñoz-Gea et al.

(e.g., Super-Peers layer). The search requests are sent to the rendez-vous node, and this
evaluates the query locally on its own content, and supports complex queries. If the
content is not located in the rendez-vous, most of the available networks use flooding
or random walks or expanding-ring Time-To-Live (TTL) search on the graph to query
content stored by overlay peers. This is inefficient because queries for content that are
not widely replicated must be sent to a large fraction of peers, and there is no coupling
between topology and data items’location [8]. Some examples of P2P unstructured net-
works are: Gnutella, FastTrack/Kazaa, BitTorrent and eDonkey 2000 [8].

In sum, for a human being, the searching process is easier in an unstructured net-
work, since this is made using patterns of very high level (like in Google, for example).
Nevertheless, there exists much inefficiency in the location process of the content. In
structured networks, exactly the opposite happens: the location is quasi-immediate, but
the searching process is more tedious.

3 Description of the System

Our proposal tries to define a hybrid system. Therefore, the user can search contents
using more or less general fy the searching criterion that content which he wishes to
download, like in unstructured networks. Nevertheless, the network will be organized
in a structured way, which will facilitate the location of the contents.

All the nodes are immersed in a structured overlay network (anyone of the previously
mentioned types). In addition, the nodes divide automatically into different sub-groups,
in a more or less uniform way, surrounding a rendez-vous node. This node has the
best peformances in terms of CPU, bandwidth and reliability (see Section 3.2). When
searching for a content, the user will send the search parameters to its rendez-vous, and
this will return information about who has the contents in this sub-group.

All the rendez-vous nodes of the network are going to be members of a multicast
group defined within the same structured network. This way, if the search fails, the
rendez-vous node will send the request to the rest of rendez-vous nodes in a multicast
way. Fig. 1 describes the general architecture of the system.

GENERAL OVERLAY NETWORK

MULTICAST GROUP

Fig. 1. General architecture of the system

A Hybrid Topology Architecture for P2P File Sharing Systems 223

3.1 Obtaining the Identifiers and Joining the General Network

Every node needs to obtain a NodeID. In this work, this identifier is obtained applying
a hash function (MD5 or SHA-1) to its MAC or IP address. In the same way each
node also needs to obtain a SubgroupID that identifies the sub-group to which the node
is going to belong. We propose to use a previously well-known server to obtain this
identifier. Each sub-group will have a maximum number of nodes, and the nodes will
be assigned by order to each one of the sub-groups until completing their maximum
capacity. When the existing sub-groups are completed new sub-groups will be created.

As is usual in any structured network a node needs to know at least one address
of another node in the overlay network. The previous server can also provide this in-
formation. Finally, the node will have to link to the P2P overlay network, using the
mechanism imposed by the structured network.

3.2 Joining the Sub-group

Each node of the sub-group will be able to establish a TCP connection with its rendez-
vous node, and they will send their content list to it. Each sub-group is identified by a
SubgroupID. Initially, a node looks for its rendez-vous. To do this, it uses the structured
network to locate the node which NodeID fits with its SubgroupID. This node knows
the IP address of the rendez-vous node of its sub-group. The last step consists of trans-
mitting this information to the requester node. Note that in this way the system builds
an unstructured network by using an underground structured network. In addition, this
last property allows us to define the rendez-vous nodes dynamically and to guarantee
the stability of the network throughout time.

3.3 Management of the Hierarchy

When the new node finds its rendez-vous, it notifies its resources of bandwidth and
CPU. The rendez-vous nodes control the nodes that are linked to their sub-group and
they form an ordered list of future rendez-vous candidates: the longer a node remains
connected (and the better resources it has), the better candidate it becomes. This list is
transmitted to all the members of the sub-group, and when the rendez-vous fails, the
first node in the list becomes its successor. Later, it must inform all sub-group members
that this node is now the new rendez-vous. Also, it must to modify this information in
the node which NodeID fits with its SubgroupID.

3.4 Management of the Rendez-Vous Nodes

All the rendez-vous nodes are members of a multicast group defined at application level.
When a node becomes rendez-vous, it must be linked to this multicast group, in order to
spread the unsuccessful searches to the rest of sub-groups. Structured P2P networks can
be used to implement an application layer multicast service, for example CAN-Multicast
[9], Chord-Multicast [10] and Scribe [11]. Each one uses a different P2P overlay and it
can implement the multicast service using flooding (CAN-Multicast, Chord-Multicast)
or the construction of a tree (Scribe). Anyone of the previous methods provides an ef-
ficient mechanism to identify and to send messages to all the members of a group.

224 J.P. Muñoz-Gea et al.

Our proposal uses Chord-Multicast. It is not necessary that the multicast process
reaches all the group members before sending the searching results to the requester
node. When one node responds affirmatively to a request it sends to the requester’s
rendez-vous the coincidences of the search in its database. Next, this rendez-vous gives
back immediately the IP address and the corresponding metadata to the requester node.
Therefore, the requester node obtains the searching results as soon as possible.

3.5 Registering the Shared Files

In a similar way to KaZaA, when a node establishes connection with its rendez-vous it
sends the metadata of those files that it wants to share. This allows the rendez-vous to
maintain a data base including the identifiers of the files that all the nodes of the sub-
group are sharing and the corresponding IP address of the node that contains them. The
information sent by the node includes the name of the file, its size and its description.

3.6 Search

When a user wishes to make the search of certain content, his node sends a request
on the TCP connection established with its rendez-vous. For each coincidence of the
search in the data base, the rendez-vous gives back the IP address and the corresponding
metadata.

If the search fails, the user has the possibility of asking for to its rendez-vous node
that tries to contact with other rendez-vous. The identification of those nodes is simple,
since all belong to the same application layer multicast group.

4 Advantages of the System

Next we are going to describe some of the contributions of the system proposed in this
work. First, it is necessary to emphasize that all the nodes are assigned to a sub-group
and not to a server. The nodes are able to automatically find the rendez-vous responsible
for their sub-group.

It is also necessary to emphasize that this system is able to manage the heterogeneity
of the network too. The most stable nodes and those with better benefits will become
rendez-vous nodes, which will increase the network performances.

On the other hand, the application layer multicast service provides an effective way
to share information among rendez-vous nodes. In this way the maintenance of multicast
group is practically made in an automatic mode. In addition, this guarantees that any
content in the network can be located by any user.

Finally, the searches will be made in a simple way, similar to those made in current
unstructured file-sharing applications.

5 Simulations

One of the advantages of this system, commented previously, is that any content present
in the network could be located by any user. Nevertheless, the searches of contents

A Hybrid Topology Architecture for P2P File Sharing Systems 225

present in the same sub-group will be faster and more efficient than when the searches
need to use other rendez-vous nodes.

There are several interesting parameters that is necessary to quantify. First, the proba-
bility that the requested content is registered in the rendez-vous of the node’s sub-group.
Second, the evolution of the previous parameter throughout time. Since the users are
making successive searches of contents in other sub-groups of the network, these auto-
matically will be registered in their own rendez-vous node, increasing the value of this
probability. Finally, it is also interesting to find out the average number of rendez-vous
nodes that will be consulted in order to locate a content.

In order to quantify the previous parameters a simulator in C language has been pro-
grammed. The contents are classified in three classes based on the degree of interest that
they can motivate in the users (”very interesting”, ”interesting” and ”of little interest”).
At the beginning, the available contents are distributed in a random way among all the
nodes of the network. As has been mentioned before, the rendez-vous share information
using a Chord-Multicast procedure.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(c

on
te

nt
 in

 r
en

de
z−

vo
us

)

Number of Iterations

Any Content
The Most Interesting Contents

Fig. 2. Probability that a content is located in the same sub-group as the requester node

The simulation results show the probability that a content is located in the same sub-
group as the requester node, as well as the average and maximum number of rendez-
vous consulted until content location. All these results are obtained based on the number
of simulation iterations. In each one, all the nodes of the network ask for a content that
they do not have.

Figures 2, 3 and 4 present the simulation results corresponding to a network with
12,800 different contents and 6,400 nodes, with 128 rendez-vous nodes.

Fig. 2 shows the probability that the content is in the same requester’s sub-group, for
both the most interesting contents and for any content. It is observed that this probability
grows as the number of iterations increases, but converging to a value of one, which
assures that our system is stable. This also indicates that our architecture assures that,
in a few steps, the contents will be equally distributed among all the sub-groups. It is
also possible to observe that in the transitory, the probability of finding an interestig
content in the rendez-vous increases more quickly than the probability of finding any
content.

226 J.P. Muñoz-Gea et al.

0 500 1000 1500
10

0

10
1

10
2

N
um

be
r

of
 r

en
de

z−
vo

us
 c

on
su

lte
d

Number of Iterations

Any Content
The Most Interesting Contents

Fig. 3. Average number of rendez-vous. consulted until content location (in semilogarithmic
scale).

Fig. 3 shows the average number of rendez-vous consulted to find a content. It is
observed that the number of consulted rendez-vous quickly decreases, and when the
number of iterations reaches 500 this value converges to one, which indicates that the
content is in the same sub-group as the requester node. This shows us that the load
coming from other sub-groups is minimal. It is also observed that this parameter de-
creases more quickly in the case of the more interesting contents than in the case of
other contents.

Finally, Fig. 4 shows, in linear scale, the maximum number of rendez-vous consulted
to locate any content. This parameter oscillates a lot in the initial transitory, but when
it finishes it converges to values near the unit, agreeing practically with the average
number.

Next, we are going to check the effect that both the number of contents and the
number of rendez-vous nodes have on the probability that a content is located in the
same requester’s sub-group. Figure 5 shows the previous probability but with 6,400 and
19,200 contents. It can be observed that when the number of contents in the network

0 500 1000 1500
0

20

40

60

80

100

120

M
ax

im
um

 n
um

be
r

of
 r

en
de

z−
vo

us
 c

on
su

lte
d

Number of Iterations

Any Content
The Most Interesting Contents

Fig. 4. Maximum number of rendez-vous. consulted until content location (in linear scale).

A Hybrid Topology Architecture for P2P File Sharing Systems 227

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(c

on
te

nt
 in

 r
en

de
z−

vo
us

)

Number of Iterations

Any Content, with 6,400 contents
The Most Interesting Contents, with 6,400 contents
Any Content, with 19,200 contents
The Most Interesting Contents, with 19,200 contents

Fig. 5. Probability that a content is located in the same sub-group as the requester node, with
6,400 and 19,200 contents

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(c

on
te

nt
 in

 r
en

de
z−

vo
us

)

Number of Iterations

Any Content, with 64 rendez−vous
The Most Interesting Contents, with 64 rendez−vous
Any Content, with 256 rendez−vous
The Most Interesting Contents, with 256 rendez−vous

Fig. 6. Probability that a content is located in the same sub-group as the requester node, with 64
and 256 rendez-vous

diminishes the probability of finding it in the same requester’s sub-group increases more
quickly. On the other hand, when the number of contents in the network increases, a
greater number of iterations is needed for the previous probability to reach the value of
one.

Besides, Figure 6 shows the previous probability in a similiar network but with 64
and 256 rendez-vous nodes. It can be observed that the effect of the number of rendez-
vous on this probability is quite similar to the effect of the number of contents. When
the number of rendez-vous diminishes, the probability of finding a content in the same
requester’s sub-group increases more quickly. On the other hand, when the number of
rendez-vous increases, a greater number of iterations is needed to obtain a probability
close to one.

Next, we are going to compare the presented approach with the existing ones. In
[1], peers are organized into groups, and each group has its autonomous intra-group
structured overlay network and lookup service. Groups are organized in a top-level

228 J.P. Muñoz-Gea et al.

structured overlay network. To find a peer that it is responsible for a key, the top-level
overlay first determines the group responsible for the key; the responsible group then
uses its intra-group overlay to determine the specific peer that is responsible for the key.
However, due to the use of structured networks this system does not support complex
queries. The main advantage of this system is to reduce the expected number of hops
that are required for a lookup, but in any case this is bigger than in our system, since in
steady state only one hop is required.

In [2], they call an instance of a structured overlay as a organizational ring. A multi-
ring protocol stitches together the organizational rings and implements a global ring.
Each ring has a globally unique ringID, which is known by all the members of the ring.
Every search message carries, in addition to a target key, the ringID in which the key
is stored. Then, the node forwards the message in the global ring to the group that cor-
responds to the desired ringId. When a key is inserted into a organizational ring, it is
necessary that a special indirection record is inserted into the global ring that associates
the key with the ringID of the organizational ring where key is stored. However, the
expected number of hops that are required for a lookup is similar to the previous work.

Finally, in [3], it is proposed the use of a universal ring, but it provides only boot-
strap functionality while each service runs in a separate P2P overlay. The universal ring
provides: an indexing service that enables users to find services of interest, a multicast
service used to distributed software updates, a persistent store and distribution network
that allows users to obtain the code needed to participate in a service’s overlay and a
service to provide users with a contact node to join a service overlay.

6 Conclusions

This paper presents a hybrid P2P overlay network that makes easier for the user both
the searching process and the content location. The simulation results show that in this
type of networks the contents are distributed in a way that minimizes the overload on
the rendez-vous nodes.

We have also verified that an increase of both the number of rendez-vous and of
contents increases the number of necessary iterations to guarantee that the content is
located in the same requester’s sub-group.

Acknowledgements

This work has been supported by the Spanish Researh Council under project TEC2005-
08068-C04-01/TCM and with funds of DG Technological Innovation and Information
Society of Industry and Environment Council of the Regional Government of Murcia
and with funds ERDF of the European Union.

References

1. Garcés-Erice, L., Biersack, E.W., Ross, K.W., Felber, P.A., Urvoy-Keller, G.: Hierarchical
peer-to-peer systems. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 1230–1239. Springer, Heidelberg (2003)

A Hybrid Topology Architecture for P2P File Sharing Systems 229

2. Mislove, A., Druschel, P.: Providing Administrative Control and Autonomy in Structured
Peer-to-Peer Overlays. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279,
pp. 162–172. Springer, Heidelberg (2005)

3. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: One ring to rule them all: Service
discovery and binding in structured peer-to-peer overlay networks. In: Proceedings of the
SIGOPS European Workshop, Saint-Emilion, France (2002)

4. Garcés-Erice, L., Felber, P.A., Biersack, E.W., Urvoy-Keller, G., Ross, K.W.: Data index-
ing in peer-to-peer dht networks. In: Proceedings of the 24th International Conference on
Distributed Computing Systems, Tokyo, Japan, pp. 200–208 (2004)

5. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakirsh-
nan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking 11(1), 17–32 (2003)

6. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications (JSAC) 22, 41–53 (2004)

7. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System Based on the
XOR Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

8. Lua, K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-
peer overlay networks schemes. IEEE Communications Surveys & Tutorials 7, 72–93 (2005)

9. Ratsanamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast using content-
addressable networks. In: Proceedings of the Third International Workshop on Networked
Group Communication, London, UK, pp. 14–29 (2001)

10. El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient broadcast in structured p2p net-
works. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 304–314.
Springer, Heidelberg (2003)

11. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale and decen-
tralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications (JSAC) 20, 100–110 (2002)

Parallel Processing of “Group-By Join” Queries on
Shared Nothing Machines

M. Al Hajj Hassan and M. Bamha

LIFO, Université d’Orléans
B.P. 6759, 45067 Orléans Cedex 2, France

{mohamad.alhajjhassan,mostafa.bamha}@univ-orleans.fr

Abstract. SQL queries involving join and group-by operations are frequently
used in many decision support applications. In these applications, the size of
the input relations is usually very large, so the parallelization of these queries
is highly recommended in order to obtain a desirable response time. The main
drawbacks of the presented parallel algorithms that treat this kind of queries are
that they are very sensitive to data skew and involve expansive communication
and Input/Output costs in the evaluation of the join operation. In this paper, we
present an algorithm that minimizes the communication cost by performing the
group-by operation before redistribution where only tuples that will be present
in the join result are redistributed. In addition, it evaluates the query without the
need of materializing the result of the join operation and thus reducing the In-
put/Output cost of join intermediate results. The performance of this algorithm is
analyzed using the scalable and portable BSP (Bulk Synchronous Parallel) cost
model which predicts a near-linear speed-up even for highly skewed data.

Keywords: PDBMS, Parallel joins, Data skew, Join product skew, GroupBy-Join
queries, BSP cost model.

1 Introduction

Data warehousing, On-Line Analytical Processing (OLAP) and other multidimensional
analysis technologies have been employed by data analysts to extract interesting in-
formation from large database systems in order to improve the business performance
and help the organisations in decision making. In these applications, aggregate queries
are widely used to summarize large volume of data which may be the result of the
join of several tables containing billions of records [1,2]. The main difficulty in such
applications is that the result of these analytical queries must be obtained interactively
[1,3] despite the huge volume of data in warehouses and their rapid growth especially in
OLAP systems [1]. For this reason, parallel processing of these queries is highly recom-
mended in order to obtain acceptable response time [4]. Research has shown that join,
which is one of the most expansive operations in DBMS, is parallelizable with near-
linear speed-up only in ideal cases [5]. However, data skew degrades the performance
of parallel systems [6,5,7,8,9,10]. Thus, effective parallel algorithms that evenly dis-
tribute the load among processors and minimizes the inter-site communication must be
employed in parallel and distributed systems in order to obtain acceptable performance.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 230–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 231

In traditional algorithms that treat ”GroupBy-Join” queries1, join operations are per-
formed in the first step and then the group-by operation [2,11]. But the response time of
these queries is significantly reduced if the group-by operation is performed before the
join [2], because group-by reduces the size of the relations thus minimizing the join and
data redistribution costs. Several algorithms that perform the group-by operation before
the join operation were presented in the literature [12,13,14,11].

In the ”Early Distribution Schema” algorithm presented in [14], all the tuples of the
tables are redistributed before applying the join or the group-by operations, thus the
communication cost in this algorithm is very high. However, the cost of its join opera-
tion is reduced because the group-by is performed before the expansive join operation.
In the second algorithm, ”Early GroupBy Scheme” [14], the group-by operation is per-
formed before the distribution and the join operations thus reducing the volume of data.
But in this algorithm, all the tuples of the group-by results are redistributed even if they
do not contribute in the join result. This is a drawback, because in some cases only few
tuples of relations formed of million of tuples contribute in the join operation, thus the
distribution of all these tuples is useless.

These algorithms fully materialize the intermediate results of the join operations.
This is a significant drawback because the size of the result of this operation is generally
large with respect to the size of the input relations. In addition, the Input/Output cost in
these algorithms is very high where it is reasonable to assume that the output relation
cannot fit in the main memory of each processor, so it must be reread in order to evaluate
the aggregate function.

In this paper, we present a new parallel algorithm used to evaluate ”GroupBy-Join”
queries on Shared Nothing machines (a multiprocessors machine where each processor
has its own memory and disks [15]). In this algorithm, we do not materialize the join
operation as in the traditional algorithms where the join operation is evaluated first and
then the group-by and aggregate functions [11]. So the Input/Output cost is minimal
because we do not need to save the huge volume of data that results from the join
operation.

We also use the histograms of both relations in order to find the tuples which will be
present in the join result. After finding these tuples, we apply on them the grouping and
aggregate function, in each processor, before performing the join. Using our approach,
we reduce the size of data and communication costs to minimum. It is proved in [5,6],
using the BSP model, that histogram management has a negligible cost when compared
to the gain it provides in reducing the communication cost. In addition, Our algorithm
avoids the problem of data skew because the hashing functions are only applied on
histograms and not on input relations.

The performance of this algorithm is analyzed using the scalable and portable BSP
cost model [16] which predicts for our algorithm a near-linear speed-up even for highly
skewed data.

The rest of the paper is organized as follows. In section 2, we present the BSP cost
model used to evaluate the processing time of the different phases of the algorithm. In
section 3, we give an overview of different computation methods of ”GroupBy-Join”
queries. In section 4, we describe our algorithm. We then conclude in section 5.

1 GroupBy-Join queries are queries involving group-by and join operations.

232 M. Al Hajj Hassan and M. Bamha

2 The BSP Cost Model

Bulk-Synchronous Parallel (BSP) cost model is a programming model introduced by
L. Valiant [17] to offer a high degree of abstraction like PRAM models and yet allow
portable and predictable performance on a wide variety of multi-processor architectures
[18,16]. A BSP computer contains a set of processor-memory pairs, a communication
network allowing inter-processor delivery of messages and a global synchronization
unit which executes collective requests for a synchronization barrier. Its performance is
characterized by 3 parameters expressed as multiples of the local processing speed:

– the number of processor-memory pairs p,
– the time l required for a global synchronization,
– the time g for collectively delivering a 1-relation (communication phase where each

processor receives/sends at most one word). The network is assumed to deliver an
h-relation in time g ∗ h for any arity h.

TIM
E

P1 P2 P3 Pp

global synchronisation

global synchronisation

...

. . .

. . .

Fig. 1. A BSP superstep

A BSP program is executed as a sequence of supersteps, each one divided into (at
most) three successive and logically disjoint phases. In the first phase each processor
uses only its local data to perform sequential computations and to request data trans-
fers to/from other nodes. In the second phase the network delivers the requested data
transfers and in the third phase a global synchronization barrier occurs, making the
transferred data available for the next superstep. The execution time of a superstep s is
thus the sum of the maximal local processing time, of the data delivery time and of the
global synchronization time:

Time(s) = max
i:processor

w
(s)
i + max

i:processor
h

(s)
i ∗ g + l

where w
(s)
i is the local processing time on processor i during superstep s and h

(s)
i =

max{h
(s)
i+ , h

(s)
i−} where h

(s)
i+ (resp. h

(s)
i−) is the number of words transmitted (resp. re-

ceived) by processor i during superstep s. The execution time,
∑

s Time(s), of a BSP

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 233

program composed of S supersteps is therefore a sum of 3 terms: W +H∗g+S∗l where
W =

∑
s maxi w

(s)
i and H =

∑
s maxi h

(s)
i . In general W , H and S are functions of p

and of the size of data n, or (as in the present application) of more complex parameters
like data skew and histogram sizes. To minimize execution time of a BSP algorithm,
design must jointly minimize the number S of supersteps and the total volume h (resp.
W) and imbalance h(s) (resp. W (s)) of communication (resp. local computation).

3 Computation of “Group-By Join” Queries

In DBMS, the aggregate functions can be applied on the tuples of a single table, but in
most SQL queries, they are applied on the output of the join of multiple relations. In the
later case, we can distinguish two types of ”GroupBy-Join” queries. We will illustrate
these two types using the following example.

In this example, we have three relations that represent respectively Suppliers, Prod-
ucts and the quantity of a product shipped by a supplier in a specific date.

SUPPLIER (Sid, Sname, City)
PRODUCT (Pid, Pname, Category)
SHIPMENT (Sid, Pid, Date, Quantity)

Query 1
Select p.Pid, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Where p.Pid = s.Pid
Group By p.Pid

Query 2
Select p.Category, SUM (Quantity)

From PRODUCT as p, SHIPMENT as s

Where p.Pid = s.Pid
Group By p.Category

The purpose of Query1 is to find the total quantity of every product shipped by all
the suppliers, while that of Query2 is to find the total amount of every category of
product shipped by all the suppliers.

The difference between Query1 and Query2 lies in the group-by and join attributes.
In Query1, the join attribute (Pid) and the group-by attribute are the same. In this
case, it is preferable to carry out the group-by operation first and then the join oper-
ation [13,14], because the group-by operation reduces the size of the relations to be
joined. As a consequence, applying the group-by operation before the join operation in
PDBMS2 results in a huge gain in the communication cost and the execution time of
the ”GroupBy-Join” queries.

In the contrary, this can not be applied on Query 2, because the join attribute (Pid)
is different from the group-by attribute (category).

2 PDBMS : Parallel DataBase Management Systems.

234 M. Al Hajj Hassan and M. Bamha

In this paper, we focus on ”GroupBy-Join” queries when the join attributes are part
of the group-by attributes. In our algorithm, we succeeded to redistribute only tuples
that will be present in the join result after applying the aggregate function. Therefore,
the communication cost is reduced to minimum.

4 Presented Algorithm

In this section, we present a detailed description of our parallel algorithm used to evalu-
ate ”GroupBy-Join” queries when the join attributes are part of the group-by attributes.
We assume that the relation R (resp. S) is partitioned among processors by horizontal
fragmentation and the fragments Ri for i = 1, ..., p are almost of the same size on each
processor, i.e. |Ri| 	 |R|

p where p is the number of processors.
For simplicity of description and without loss of generality, we consider that the

query has only one join attribute x and that the group-by attribute set consists of x, an
attribute y of R and another attribute z of S . We also assume that the aggregate function
f is applied on the values of the attribute u of S. So the treated query is the following:

Select R.x, R.y, S.z, f(S.u)

From R, S

Where R.x = S.x

Group By R.x, R.y, S.z

In the rest of this paper, we use the following notation for each relation T ∈ {R, S} :

– Ti denotes the fragment of relation T placed on processor i,
– Histw(T) denotes the histogram3 of relation T with respect to the attribute w, i.e.

a list of pairs (v, nv) where nv �= 0 is the number of tuples of relation T having the
value v for the attribute w. The histogram is often much smaller and never larger
than the relation it describes,

– Histw(Ti) denotes the histogram of fragment Ti,
– Histwi (T) is processor i’s fragment of the histogram of T ,
– Histw(T)(v) is the frequency (nv) of value v in relation T ,
– Histw(Ti)(v) is the frequency of value v in sub-relation Ti,
– AGGRw

f,u(T) 4 is the result of applying the aggregate function f on the values
of the aggregate attribute u of every group of tuples of T having identical values
of the group-by attribute w. AGGRw

f,u(T) is formed of a list of tuples having the
form (v, fv) where fv is the result of applying the aggregate function on the group
of tuples having value v for the attribute w (w may be formed of more than one
attribute),

– AGGRw
f,u(Ti) denotes the result of applying the aggregate function on the attribute

u of the fragment Ti,

3 Histograms are implemented as a balanced tree (B-tree): a data structure that maintains an
ordered set of data to allow efficient search and insert operations.

4 AGGRw
f,u(T) is implemented as a balanced tree (B-tree).

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 235

– AGGRw
f,u,i(T) is processor i’s fragment of the result of applying the aggregate

function on T ,
– AGGRw

f,u(T)(v) is the result fv of the aggregate function of the group of tuples
having value v for the group-by attribute w in relation T ,

– AGGRw
f,u(Ti)(v) is the result fv of the aggregate function of the group of tuples

having value v for the group-by attribute w in sub-relation Ti,
– ‖T ‖ denotes the number of tuples of relation T , and
– |T | denotes the size (expressed in bytes or number of pages) of relation T .

The algorithm proceeds in four phases. We will give an upper bound of the execution
time of each superstep using BSP cost model. The notation O(...) hides only small
constant factors: they depend only on the program implementation but neither on data
nor on the BSP machine parameters.

Phase 1: Creating Local Histograms
In this phase, the local histograms Histx(Ri)i=1,...,p (resp. Histx(Si)i=1,...,p) of blocks
Ri (resp. Si) are created in parallel by a scan of the fragment Ri (resp. Si), on processor
i, in time ci/o ∗ maxi=1,...,p |Ri| (resp. ci/o ∗ maxi=1,...,p |Si|) where ci/o is the cost of
writing/reading a page of data from disk.

In addition, the local fragments AGGRx,z
f,u(Si)i=1,...,p of blocks Si are created on the fly

while scanning relation Si in parallel, on each processor i, by applying the aggregate
function f on every group of tuples having identical values of the couple of attributes
(x, z). At the same time, the local histograms Histx,y(Ri)i=1,...,p are also created.
(In this algorithm the aggregate function may be MAX, MIN, SUM or COUNT .
For the aggregate AV G a similar algorithm that merges the COUNT and the SUM
algorithms is applied).

In principle, this phase costs:

T imephase1 = O
(
ci/o ∗ max

i=1,...,p
(|Ri| + |Si|)

)
.

Phase 2: Creating the Histogram of R �� S
The first step in this phase is to create the histograms Histxi (R) and Histxi (S) by
a parallel hashing of the histograms Histx(Ri) and Histx(Si). After hashing, each
processor i merges the messages it received to constitute Histxi (R) and Histxi (S).

While merging, processor i also retains a trace of the network layout of the values d
of the attribute x in its Histxi (R) (resp. Histxi (S)): this is nothing but the collection of
messages it has just received. This information will help in forming the communication
templates in phase 3.

The cost of redistribution and merging step is (cf. to proposition 1 in [19]):

T imephase2.a =

O
(
min

(
g ∗ |Histx(R)|+||Histx(R)||, g ∗ |R|

p
+

||R||
p

)
+ min

(
g ∗ |Histx(S)| + ||Histx(S)||, g ∗ |S|

p
+

||S||
p

)
+ l

)
,

236 M. Al Hajj Hassan and M. Bamha

where g is the BSP communication parameter and l the cost of a barrier of synchroni-
sation.

We recall that, in the above equation, for a relation T ∈ {R, S}, the term min(g ∗
|Histx(T)|+||Histx(T)||, g∗ |T |

p
+ ||T ||

p
) is the necessary time to compute Histx

i=1,...,p(T)

starting from the local histograms Histx(Ti)i=1,...,p.
The histogram5 Histx

i (R �� S) is then computed on each processor i by intersecting
Histx

i (R) and Histx
i (S) in time:

T imephase2.b = O
(

max
i=1,...,p

(
min(||Histx

i (R)||, ||Histx
i (S)||)

))
.

The total cost of this phase is:

T imephase2 = T imephase2.a + T imephase2.b

O
(
min

(
g ∗ |Histx(R)|+||Histx(R)||, g ∗ |R|

p
+

||R||
p

)
+ min

(
g ∗ |Histx(S)| + ||Histx(S)||, g ∗ |S|

p
+

||S||
p

)
+ max

i=1,...,p

(
min(||Histx

i (R)||, ||Histx
i (S)||)

)
+ l

)
.

Phase 3: Data Redistribution
In order to reduce the communication cost, only tuples of Histx,y(R) and AGGRx,z

f,u(S)

that will be present in the join result will be redistributed.
To this end, we first compute on each processor j the intersections Hist

(j)x
(Ri) =

Hist(j)x(Ri) ∩ Histj(R �� S) and Hist
(j)x

(Si) = Hist(j)x(Si) ∩ Histj(R �� S) for
i = 1, ..., p where Hist(j)x(Ri) (resp. Hist(j)x(Si)) is the fragment of Histx(Ri) (resp.
Histx(Si)) which was sent by processor i to processor j in the second phase.

The cost of this step is:

O(
∑

i

||Hist(j)x(Ri)|| +
∑

i

||Hist(j)x(Si)||).

We recall that,∑
i ||Hist(j)x(Ri)|| = || ∪i Hist(j)x(Ri)|| ≤ min(||Histx(R)||, ||R||

p
)

and∑
i ||Hist(j)x(Si)|| = || ∪i Hist(j)x(Si)|| ≤ min(||Histx(S)||, ||S||

p
),

thus the total cost of this step is:

T imephase3.a = O
(
min

(
||Histx(R)||, ||R||

p

)
+ min

(
||Histx(S)||, ||S||

p

))
.

Now each processor j sends each fragment Hist
(j)x

(Ri) (resp. Hist
(j)x

(Si)) to proces-
sor i. Thus, each processor i receives

∑
j |Hist

(j)x
(Ri)| +

∑
j |Hist

(j)x
(Si)| pages of

data from the other processors.

5 The size of Hist(R �� S) ≡ Hist(R) ∩ Hist(S) is generally very small compared to
|Hist(R)| and |Hist(S)| because Hist(R �� S) contains only values that appears in both
relations R and S.

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 237

In fact,Histx(Ri)=∪jHist(j)x(Ri) and |Histx(Ri)|=
∑

j |Hist(j)x(Ri)|≥
∑

j |Hist(j)x

(Ri) ∩ Histx(R �� S)|, thus |Histx(Ri)| ≥
∑

j |Hist
(j)x

(Ri)| (this also applies to
Histx(Si)).

Therefore, the total cost of this stage of communication is at most:

T imephase3.b = O
(
g ∗

(
|Hist

x
(Ri)|+|Hist

x
(Si)|

)
+l

)
.

Remark 1. ∪jHist
(j)x

(Ri) is simply the intersection of Histx(Ri) and the histogram
Histx(R �� S) which will be noted:

Hist
x
(Ri) = ∪jHist

(j)x
(Ri) = Histx(Ri) ∩ Histx(R �� S).

Hence Hist
x
(Ri) is only the restriction of the fragment of Histx(Ri) to values which

will be present in the join of the relations R and S. (this also applies to Hist
x
(Si)).

Now, each processor obeys all the distributing orders it has received, so only tuples of
Hist

x,y
(Ri) = Histx,y(Ri)∩Hist

x
(Ri) and AGGR

x,z
f,u(Si) = AGGRx,z

f,u(Si)∩Hist
x
(Si)

are redistributed.
To this end, we first evaluate Hist

x,y
(Ri) and AGGR

x,z
f,u(Si). The cost of this step is

of order:

T imephase3.c = O
(

max
i=1,...,p

(
||Histx,y(Ri)|| + ||AGGRx,z

f,u(Si)||
))

,

which is the necessary time to traverse all the tuples of Histx,y(Ri) and AGGRx,z
f,u(Si)

and access Hist
x
(Ri) and Hist

x
(Si) respectively on each processor i.

Now, each processor i distributes the tuples of Hist
x,y

(Ri) and AGGR
x,z

f,u(Si). After

distribution, all the tuples of Hist
x,y

(Ri) and AGGR
x,z

f,u(Si) having the same values
of the join attribute x are stored on the same processor. So, each processor i merges the
blocks of data received from all the other processors in order to create Hist

x,y

i (R) and
AGGR

x,z

f,u,i(S).
The cost of distributing and merging the tuples is of order (cf. to proposition 1 in

[19]):

T imephase3.d =

O
(
min

(
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗ |R|
p

+
||R||

p

)
+ min

(
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗ |S|
p

+
||S||
p

)
+ l

)
,

where the terms:

min
(
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||, g ∗ |R|

p
+

||R||
p

)
and

min
(
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||, g ∗ |S|

p
+

||S||
p

)

238 M. Al Hajj Hassan and M. Bamha

represent the necessary time to compute Hist
x,y
i (R) and AGGR

x,z
f,u,i(S) starting from

Hist
x,y

(Ri) and AGGR
x,z
f,u(Si) respectively.

The total time of the redistribution phase is:

T imephase3 =

O
(
min

(
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗ |R|
p

+
||R||

p

)
+ min

(
||Histx(R)||, ||R||

p

)
+ min

(
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗ |S|
p

+
||S||
p

)
+ min

(
||Histx(S)||, ||S||

p

)
+ max

i=1,...,p

(
||Histx,y(Ri)|| + ||AGGRx,z

f,u(Si)||
)

+ l
)
.

We mention that we only redistribute Hist
x,y

(Ri) and AGGR
x,z

f,u(Si) and their sizes
are generally very small compared to |Ri| and |Si| respectively. In addition, the size of
|Histx(R �� S)| is generally very small compared to |Histx(R)| and |Histx(S)|. Thus,
we reduce the communication cost to minimum.

Phase 4: Global Computation of the Aggregate Function
In this phase, we compute the global aggregate function on each processor. We use the
following algorithm where AGGRx,y,z

f,u,i (R �� S) holds the final result on each processor
i. The tuples of AGGRx,y,z

f,u,i (R �� S) have the form (x, y, z, v) where v is the result of the
aggregate function.

Par (on each node in parallel) i = 1, ..., p

AGGRx,y,z
f,u,i (R �� S) = NULL 6

For every tuple t of relation Hist
x,y
i (R) do

freq = Hist
x,y
i (R)(t.x, t.y)

For every entry v1 = AGGR
x,z
f,u,i(S)(t.x, z) do

Insert a new tuple (t.x, t.y, z, f(v1, freq))

into AGGRx,y,z
f,u,i (R �� S);

EndFor
EndFor

EndPar

The time of this phase is: O
(
maxi=1,...,p ||AGGRx,y,z

f,u,i (R �� S)||
)
, because the com-

bination of the tuples of Hist
x,y
i (R) and AGGR

x,z
f,u,i(S) is performed to generate all the

tuples of AGGRx,y,z
f,u,i (R �� S).

Remark 2. In practice, the imbalance of the data related to the use of the hash func-
tions can be due to:

– a bad choice of the hash function used. This imbalance can be avoided by using
the hashing techniques presented in the literature making it possible to distribute
evenly the values of the join attribute with a very high probability [20],

6 This instruction creates a B-tree to store histogram’s entries.

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 239

– an intrinsic data imbalance which appears when some values of the join attribute
appear more frequently than others. By definition a hash function maps tuples hav-
ing the same join attribute values to the same processor. These is no way for a
clever hash function to avoid load imbalance that result from these repeated val-
ues [10]. But this case cannot arise here owing to the fact that histograms contains
only distinct values of the join attribute and the hashing functions we use are always
applied to histograms.

The global cost of evaluating the ”GroupBy-Join” queries is of order:

T imetotal = O
(
ci/o ∗ max

i=1,...,p
(|Ri| + |Si|)

+ max
i=1,...,p

||AGGRx,y,z
f,u,i (R �� S)||

+ min(g ∗ |Histx(R)| + ||Histx(R)||, g ∗ |R|
p

+
||R||

p
)

+ min(g ∗ |Histx(S)| + ||Histx(S)||, g ∗ |S|
p

+
||S||
p

)

+ min
(
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗ |R|
p

+
||R||

p

)
+ min

(
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗ |S|
p

+
||S||
p

)
+ max

i=1,...,p

(
||Histx,y(Ri)|| + ||AGGRx,z

f,u(Si)||
)

+ l
)
.

Remark 3. In the traditional algorithms, the aggregate function is applied on the out-
put of the join operation. The sequential evaluation of the ”groupBy-Join” queries re-
quires at least the following lower bound: boundinf1 = Ω

(
ci/o∗(|R|+|S|+|R �� S|)

)
.

Parallel processing with p processors requires therefore: boundinfp = 1
p ∗ boundinf1 .

Using our approach in the evaluation of the ”GroupBy-Join” queries, we only redis-
tribute tuples that will be effectively present in the ”groupBy-Join” result, which re-
duces the communication cost to minimum. This algorithm has an asymptotic optimal
complexity because all the terms in T imetotal are bounded by those of boundinfp .

5 Conclusions

The algorithm presented in this paper is used to evaluate the ”GroupBy-Join” queries
on Shared Nothing machines when the join attributes are part of the group-by attributes.
Our main contribution in this algorithm is that we do not need to materialize the costly
join operation which is necessary in all the other algorithms presented in the literature,
thus we reduce its Input/Output cost. It also helps us to avoid the effect of data skew
which may result from computing the intermediate join results and from redistributing

240 M. Al Hajj Hassan and M. Bamha

all the tuples if AVS (Attribute Value Skew) exists in the relation. In addition, we par-
tially evaluate the aggregate function before redistributing the data between processors
or evaluating the join operation, because group-by and aggregate functions reduce the
volume of data. To reduce the communication cost to minimum, we use the histograms
to distribute only the tuples of the grouping result that will effectively be present in the
output of the join operation. This algorithm is proved to have a near-linear speed-up,
using the BSP cost model, even for highly skewed data. Our experience with the join
operation [5,6,19] is evidence that the above theoretical analysis is accurate in practice.

References

1. Datta, A., Moon, B., Thomas, H.: A case for parallelism in datawarehousing and OLAP. In:
Ninth International Workshop on Database and Expert Systems Applications, DEXA 1998,
pp. 226–231. IEEE Computer Society, Vienna (1998)

2. Chaudhuri, S., Shim, K.: Including Group-By in Query Optimization. In: Proceedings of the
Twentieth International Conference on Very Large Databases, Santiago, Chile, pp. 354–366
(1994)

3. Tsois, A., Sellis, T.K.: The generalized pre-grouping transformation: Aggregate-query opti-
mization in the presence of dependencies. In: VLDB, pp. 644–655 (2003)

4. Bamha, M.: An Optimal Skew-insensitive Join and Multi-join Algorithm for Distributed
Architectures. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS,
vol. 3588, pp. 616–625. Springer, Heidelberg (2005)

5. Bamha, M., Hains, G.: A Skew-Insensitive Algorithm for Join and Multi-join Operations on
Shared Nothing Machines. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS,
vol. 1873. Springer, Heidelberg (2000)

6. Bamha, M., Hains, G.: A frequency adaptive join algorithm for Shared Nothing machines.
Journal of Parallel and Distributed Computing Practices (PDCP), 3(3), 333–345 (1999); ap-
pears also In: Columbus, F. (ed.) Progress in Computer Research, II, Nova Science Publishers
(2001)

7. Seetha, M., Yu, P.S.: Effectiveness of parallel joins. IEEE, Transactions on Knowledge and
Data Enginneerings 2, 410–424 (1990)

8. Hua, K.A., Lee, C.: Handling data skew in multiprocessor database computers using partition
tuning. In: Lohman, G.M., Sernadas, A., Camps, R. (eds.) Proc. of the 17th International
Conference on Very Large Data Bases, Barcelona, Catalonia, Spain, pp. 525–535. Morgan
Kaufmann, San Francisco (1991)

9. Wolf, J.L., Dias, D.M., Yu, P.S., Turek, J.: New algorithms for parallelizing relational
database joins in the presence of data skew. IEEE Transactions on Knowledge and Data
Engineering 6, 990–997 (1994)

10. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical Skew Handling in Par-
allel Joins. In: Proceedings of the 18th VLDB Conference, Vancouver, British Columbia,
Canada, pp. 27–40 (1992)

11. Yan, W.P., Larson, P.K.: Performing group-by before join. In: Proceedings of the 10th IEEE
International Conference on Data Engineering, pp. 89–100. IEEE Computer Society Press,
Los Alamitos (1994)

12. Shatdal, A., Naughton, J.F.: Adaptive parallel aggregation algorithms. SIGMOD Record
(ACM Special Interest Group on Management of Data) 24, 104–114 (1995)

13. Taniar, D., Jiang, Y., Liu, K., Leung, C.: Aggregate-join query processing in parallel database
systems, In: Proceedings of The Fourth International Conference/Exhibition on High Perfor-
mance Computing in Asia-Pacific Region HPC-Asia 2000, vol. 2, pp. 824–829. IEEE Com-
puter Society Press, Los Alamitos (2000)

Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines 241

14. Taniar, D., Rahayu, J.W.: Parallel processing of ’groupby-before-join’ queries in cluster ar-
chitecture. In: Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, Brisbane, Qld, Australia, pp. 178–185. IEEE Computer Society Press, Los Alamitos
(2001)

15. DeWitt, D.J., Gray, J.: Parallel database systems: The future of high performance database
systems. Communications of the ACM 35, 85–98 (1992)

16. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and Answers about BSP. Scientific
Programming 6, 249–274 (1997)

17. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM 33,
103–111 (1990)

18. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach using BSP and MPI.
Oxford University Press, Oxford (2004)

19. Bamha, M., Hains, G.: An Efficient Equi-semi-join Algorithm for Distributed Architectures.
In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS,
vol. 3515, pp. 755–763. Springer, Heidelberg (2005)

20. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and
System Sciences 18, 143–154 (1979)

Impact of Wrapped System Call Mechanism on
Commodity Processors

Satoshi Yamada1, Shigeru Kusakabe1, and Hideo Taniguchi2

1 Grad. School of Information Sci. & Electrical Eng., Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan

satoshi@ale.csce.kyushu-u.ac.jp, kusakabe@csce.kyushu-u.ac.jp
2 Faculty of Engineering, Okayama University

3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
tani@cs.okayama-u.ac.jp

Abstract. Split-phase style transactions separate issuing a request and receiv-
ing the result of an operation in different threads. We apply this style to system
call mechanism so that a system call is split into several threads in order to cut
off the mode changes from system call execution inside the kernel. This style
of system call mechanism improves throughput, and is also useful in enhancing
locality of reference. In this paper, we call this mechanism as Wrapped System
Call (WSC) mechanism, and we evaluate the effectiveness of WSC on commod-
ity processors. WSC mechanism can be effective even on commodity platforms
which do not have explicit multithread support. We evaluate WSC mechanism
based on a performance evaluation model by using a simplified benchmark. We
also apply WSC mechanism to variants of cp program to observe the effect on
the enhancement of locality of reference. When we apply WSC mechanism to cp
program, the combination of our split-phase style system calls and our scheduling
mechanism is effective in improving throughput by reducing mode changes and
exploiting locality of reference.

Keywords: System call, mode change, locality of reference.

1 Introduction

Although recent commodity processors are built based on a procedural sequential com-
putation model, we believe some dataflow-like multithreading models are effective not
only in supporting non-sequential programming models but also in achieving high
throughput even on commodity processors. Based on this assumption, we are devel-
oping a programming environment, which is based on a dataflow-like fine-grain mul-
tithreading model[1]. Our work also includes a dataflow-like multithread program-
ming language and an operating system, CEFOS(Communication and Execution Fusion
OS)[2].

In our dataflow-like multithreading model, we use a split-phase style system call
mechanism in which a request of a system call and the receipt of the system call result
are separated in different threads. Split-phase style transactions are useful in hiding
latencies of unpredictably long operations in several situations. We apply this style to

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 242–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Impact of Wrapped System Call Mechanism on Commodity Processors 243

system calls and call as Wrapped System Call (WSC) mechanism. WSC mechanism
is useful both in reducing overhead caused by system call mechanisms on commodity
processors and in enhancing locality of reference.

In this paper, we evaluate the effectiveness of WSC mechanism on commodity pro-
cessors. Section 2 introduces our operating system, CEFOS, and some of its features
including WSC mechanism. Section 3 discusses the performance estimation and ex-
perimental benchmark results of WSC mechanism from the view point of system call
overhead. Section 4 evaluates WSC mechanism for variants of cp program from the
view point of locality of reference. We conclude WSC mechanism can reduce system
call overhead and enhance locality of reference even on commodity platforms, which
have no explicit support to dataflow-like multithreading.

2 Scheduling Mechanisms in CEFOS

2.1 CEFOS for Fine-Grained Multithreading

While running user programs under the control of an operating system like Unix, fre-
quent context switches and communications between user processes and the kernel are
performed behind the scenes. A system call requests a service of the kernel, and then
voluntarily causes mode change. Activities involving operating system level operations
are rather expensive on commodity platforms.

Table 1 shows the result of a micro-benchmark LMbench [3] on platforms with com-
modity processors and Linux. The row “null call” shows the overhead of a system call
and the row “2p/0K” shows that of a process switch when we have two processes of zero
KB context. Thus, the row “x p/y K” shows the overhead of a process switch for the pair
of x and y which represent the number and the size of processes, respectively. The rows
“L1$”, “L2$” and “MainMem” show the access latency for L1 cache, L2 cache and
main memory, respectively. As seen from Table 1, activities involving operating sys-
tem level operations such as system calls and context switches are rather expensive on
commodity platforms.

Therefore, one of the key issues to improve system throughput is to reduce the fre-
quency of context switches and communications between user processes and the kernel.
In order to address this issue, we employ mechanisms for efficient cooperation between
the operating system kernel and user processes based on a dataflow-like multithreading
model in CEFOS.

Figure 1 shows the outline of the architecture of CEFOS consisting of two layers: the
external kernel in user mode and the internal kernel in supervisor mode. Internal kernel

Table 1. Results of LMbench (Clock Cycles)

processor null call 2p/0K 2p/16K L1$ L2$ MainMem

Celeron 500MHz 315 675 3235 3 11 93
Pentium4 2.53 GHz 1090 3298 5798 2 18 261

Intel Core Duo 1.6GHz 464 1327 2820 3 14 152
PowerPC G4 1GHz 200 788 2167 4 10 127

244 S. Yamada, S. Kusakabe, and H. Taniguchi

corresponds to the kernel of conventional operating systems. A process in CEFOS has
a thread scheduler to schedule its ready threads.

A program in CEFOS consists of one or more partially ordered threads which may
be fine-grained compared to conventional threads such as Pthreads. A thread in our
system does not have a sleep state and we separate threads in a split-phase style at the
points where we anticipate long latencies. Each thread is non-preemptive and runs to its
completion without going through sleep states like Pthreads. While operations within a
thread are executed based on a sequential model, threads can be flexibly scheduled as
long as dependencies among threads are not violated.

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

internal kernel

user
mode

supervisor
mode

Fig. 1. Overview of CEFOS

A process in CEFOS has a thread scheduler and schedules its ready threads basically
in the user-space. Since threads in CEFOS are a kind of user-level thread, we can control
threads with small overhead. The external-kernel mechanism in CEFOS intermediates
interaction between the kernel and thread schedulers in user processes. Although there
exist some works on user level thread scheduling such as Capriccio [4], our research dif-
fers in that we use fine-grain thread scheduling. In order to simplify control structures,
process control is only allowed at the points of thread switching. Threads in a process
are not totally-ordered but partially-ordered, and we can introduce various scheduling
mechanisms as long as the partial order relations among threads are not violated. Thus,
CEFOS has scheduling mechanisms such as WSC mechanisms and Semi-Preemption
mechanism.

2.2 Display Requests and Data (DRD) Mechanism

Operating systems use system calls or upcalls [5] for interactions between user pro-
grams and operating system kernel. System calls issue the demands of user processes
through SVC and Trap instructions, and upcalls invoke specific functions of processes.
The problem in these methods is overhead of context switches [6]. We employ Display
Requests and Data (DRD) mechanisms [7] for cooperation between user processes and
the kernel in CEFOS as we show below:

Impact of Wrapped System Call Mechanism on Commodity Processors 245

1. Each process and the kernel share a common memory area (CA).
2. Each process and the kernel display requests and necessary information on CA.
3. At some appropriate occasions, each process and the kernel check the requests and

information displayed on CA, and change the control of its execution if necessary.

This DRD mechanism assists cooperation between processes and the kernel with
small overhead. A sender or receiver of the request does not directly trigger the execu-
tion of request at the instance the request is generated. If the sender triggers directly the
execution of receiver’s side, the system may suffer from large overhead to switch. On
the other hand, the system handles the request at its convenience with small overhead
if we use DRD mechanism. For an extreme example, all requests from a process to the
kernel are buffered and the kernel is called only when the process exhausted its ready
threads.

The external kernel mechanism in CEFOS intermediates interaction between the in-
ternal kernel and thread schedulers in user processes by using this DRD mechanism.
Thus, CEFOS realizes scheduling mechanisms such as WSC mechanism and Semi-
Preemption mechanism by using DRD mechanism.

2.3 WSC Mechanism

WSC mechanism buffers system call requests from user programs until the number of
the requests satisfies some threshold and then transfers the control to the internal kernel
with a bucket of the buffered system call requests. Each system call request consists of
four kinds of elements listed below.

– type of the system call
– arguments of the system call
– the address where the system call stores its result
– ID of the thread which the system call syncs after the execution

The buffered system calls are executed like a single large system call and each result
of the original system calls is returned to the appropriate thread in the user process.
Figure 2 illustrates the control flow in WSC mechanism, and each number in Figure 2
corresponds to the explanation below.

1. A thread requests a system call to External Kernel.
2. External Kernel buffers the request of system call to CA.
3. External Kernel checks whether the number of requests has reached the threshold.

If the number of requests is less than the threshold, the thread scheduler is invoked
to select the next thread from the ready threads in the process. If the number of
request has reached the threshold, WSC mechanism sends the requests of system
calls to the internal kernel to actually perform the system calls.

4. Internal Kernel accepts the requests of system calls and executes them one by one.
5. Internal Kernel stores the result of the system call to the address which Internal

Kernel accepts as the third arguments of the system call. Also, Internal Kernel tells
the thread, whose ID is accepted as the fourth argument, that it stores the result.

246 S. Yamada, S. Kusakabe, and H. Taniguchi

6. When Internal Kernel terminates executing all requests of system calls, External
Kernel executes other threads. In other cases, WSC mechanism goes back to 3 and
repeats this transaction.

WSC mechanism reduces overhead of system calls by decreasing the number of
mode changes from user process to the kernel. Parameters and returned results of the
buffered system calls under WSC mechanism are passed through CA of DRD to avoid
frequent switches between the execution of user programs and that of the kernel.

Table 2. The values to calculate M (in clocks), and the estimated value of M

processor (Hz) Tgen Tsched Tsync Treq M

Celeron 500M 63 31 21 31 3.4
Pentium4 2.53G 110 43 27 31 1.24

Intel Core Duo 1.62G 61 30 19 29 1.42

3 Evaluation: System Call Overhead

We evaluate the effectiveness of WSC mechanism on commodity processors. The test
platform is built by extending Linux 2.6.14 on commodity PCs.

3.1 Estimation of the Effectiveness of WSC

First, we estimate the effectiveness of WSC mechanism by focusing on system call
overhead. We compare the execution time of a program with normal system calls under
the normal mechanism and that with split-phase system calls under WSC mechanism.

process

thread threadsplit-phase
system call

request of
system call

buffer system call
requests

requests >= threshold ?

thread scheduler

external kernel

internal kernel

execute system calls

User
mode

Supervisor
mode

return results &
activate waiting
threads

thread

YES

NO

1

2

3

4

5,6

Fig. 2. Control flow in WSC mechanism

Impact of Wrapped System Call Mechanism on Commodity Processors 247

The total execution time of a program with N normal system calls under the normal
mechanism, Tnor, is estimated as:

Tnor = Tonor + N × (Tsys + Tbody) + Pnor (1)

where Tonor is the execution time of the program portion excluding system calls under
the execution of the normal system call mechanism, Tsys is the setup and return cost of
a single system call, and Tbody is the execution time of the actual body of the system
call. In this estimation, we assume that we use the same system call and that there exist
no penalties concerning memory hierarchies such as cache miss penalties and TLB miss
penalties in Tonor and Tbody. Pnor is the total penalties including cache miss penalties
and TLB miss penalties during the execution of the normal system call mechanism.

Programs to which we can apply WSC mechanism are multithreaded and use split-
phase style system calls. Additional thread management should be performed in this
multithreaded program and we describe the overhead of this additional part as Tek. Tek

is estimated as:
Tek = X × Tgen + Y × Tsche + Z × Tsync (2)

where X is the number of threads, Tgen is the overhead to generate a single thread,
Y is the number of times threads are scheduled, Tsche is the overhead to schedule a
thread, Z is the number of times synchronizations are tried and Tsync is the overhead of
a synchronization.

Although the execution of system call bodies will be aggregated, buffering system
call request must be performed for each system call. We represent the overhead of
buffering a single system call request as Treq. Thus, Twsc, the total execution time of a
program with N split-phase system calls under WSC mechanism, is estimated as:

Twsc =Towsc + Tek + N × Treq+
[N/M] × Tsys + N × Tbody + Pwsc

(3)

where Towsc is the execution time of the program portion excluding system calls, M
is the number of system calls to be buffered for a single WSC (i.e. WSC threshold)
and Pwsc is the total penalties concerning memory hierarchies including cache miss
penalties and TLB miss penalties during the execution under WSC. We assume none of
such penalties exists in Towsc as in the estimation for Tonor and Tbody.

∆T , the difference between the execution time under the normal mechanism and that
of under CEFOS with WSC is estimated as:

∆T =Twsc − Tnor

=(Towsc − Tonor)+
{Tek + N × Treq − (N − [N/M]) × Tsys}+
(Pwsc − Pnor)

(4)

We can say the performance is improved by WSC mechanism when ∆T < 0. We
estimate the value of M, the number of system calls to be buffered, to satisfy this con-
dition. We assume the following conditions for the sake of simplicity: each program
portion excluding system calls is the same, and each system call body is the same both

248 S. Yamada, S. Kusakabe, and H. Taniguchi

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 4 8 16 32

of threshold

Celeron 500MHz

Pentium4 2.53GHz

Intel Core Duo 1.66GHz
normal

Fig. 3. Comparison of clock cycles (getpid)

in the normal version and in CEFOS version. Under these assumptions, we will only
observe the difference of system call cost between the normal version and the CEFOS
version. This assumption makes Towsc − Tonor and Pwsc − Pnor amount to zero. We
also assume X, Y and Z are equal to N. Thus, we can estimate the condition for M to
satisfy ∆T < 0 as:

M >
Tsys

Tsys − (Tgen + Tsche + Tsync + Treq)
(5)

We measured each value in (5) in order to calculate the value of M that satisfies the
above condition as shown in Table 2 (we used the values of null call in Table 1 for Tsys) 1.

The performance on Pentium4 2.53GHz and Intel Core Duo 1.62GHz will be im-
proved when M is larger 1. The performance on Celeron 500MHz will be improved
when M is larger than 4. (Please note M is a natural number)

3.2 Performance Evaluation Using getpid()

The above estimation assumed each system call body is the same both in the normal
version and in CEFOS version for the sake of simplicity. In this subsection, we examine
our estimation by using getpid() as a system call to meet such an assumption. We
measured the number of clocks for a number of getpid() system calls using the
hardware counter. We executed 128 getpid() system calls in our experiments. We
changed the threshold of WSC as 1, 2, 4, 8, 16 and 32 for the WSC version. We also
measured the total time of successive getpid() system calls under the normal system
call convention in unchanged Linux.

Figure 3 shows the comparison results of clock cycles for getpid() system calls.
The x-axis indicates the threshold of WSC and y-axis the ratio of clock cycles of WSC
versions compared with clock cycles under the normal system call convention in un-
changed Linux. The lower y value indicates the better result of WSC.

1 We omit the values of PowerPC G4 because of the problem of accuracy. However, the observed
M for PowerPC G4 is 4 according to the experiment explained in the next subsection.

Impact of Wrapped System Call Mechanism on Commodity Processors 249

open() open()

read()
write()

close() close()

buffer

descriptor descriptor

file1 file2

A A

B

C C

B

Fig. 4. Control flow in cp program

As seen from Figure 3, we have extra overhead when WSC threshold is 1, because of
newly added load of Tgen, Tsche, Tsync and Treq. However, we observe the effect of WSC
when the threshold becomes 2 for Pentium4 2.53GHz and Intel Core Duo 1.66GHz and
4 for Celeron 500 MHz as we estimated in the previous estimation. The clock cycles in
WSC versions are decreased as the threshold gets larger regardless of the processor type.

4 Evaluation: Locality of Reference

In the previous section, we evaluate the effectiveness of WSC mechanism in reducing
overhead caused by system calls. In this section, we examine the effectiveness in ex-
ploiting locality of reference. We can expect high throughput when we can aggregate
system calls which refer to the same code or data. The test platform is also built by
extending Linux 2.6.14 on Pentium4 2.53 GHz.

4.1 cp Program

We use modified cp programs to evaluate the effectiveness of WSC mechanism in ex-
ploiting locality of reference. Figure 4 shows an overview of the control flow in cp
program, and the symbols A, B and C in Figure 4 correspond to the ones in the expla-
nation below.

A. one open() system call opens a file to read and the other open() system call
opens another file to write, preparing a file descriptor for each file respectively.

B. read() system call reads up to designated bytes from the file descriptor into
buffer, and then write() system call writes up to designated bytes to the file
referenced by the file descriptor from buffer.

C. close() system calls close these files.

Thus, a cp program uses six system calls per transaction. We use acp program called
NORMAL version, which executes these six system calls in the order we show above,
like open(), open(), read(), write(), close() and close(). We have to
open() a file before executing read() or write(), and we have to specify the file
descriptor, which is the result of open() system call, to execute read(), write()

250 S. Yamada, S. Kusakabe, and H. Taniguchi

and close(). Therefore, we cannot simply wrap these six system calls. We have to
wrap two open() system calls and other four system calls respectively. Because of the
additional overhead of using WSC mechanism that we mentioned in Figure 3, we cannot
expect the effect when applying WSC mechanism to just one cp transaction. In fact,
doing one cp in WSC version of one cp took about two times clock cycles compared
to NORMAL version. Therefore, we consider doing multiple cps in a program.

We use other four versions of cp program, and measure 11 portions of these 5 pro-
grams to observe:

I. whether WSC mechanism is effective or not in cp programs in total,
II. the difference between the effect of wrapping single type of system calls and that

of wrapping various types of system calls, and
III. the effect of wrapping system calls which have the same code but refer to different

data.

Figure 5 shows these 5 programs and 11 portions. “N” in Figure 5 is the number of
cp transactions. Now, we explain each program and portion below. Then we explain
why we choose these portions to examine the points of our interests above.

In Program 2 in Figure 5, we wrap every one of six kinds of system calls. We call
this WSC+COLLECT version.

As a counterpart of this WSC+COLLECT, we also collect system calls of the same
type in a block but execute the block with normal system call convention. We call this
program as NORMAL+COLLECT version (Program 3 in Figure 5).

In addition, we implement WSC+RW and NORMAL+RW version (Program 4 and
5 in Figure 5), which change the order of read() and write() in WSC+COLLECT
and NORMAL+COLLECT version.

open()
open()
read()
write()
close()
close()

N

open() N

open() N

read() N

write() N

close() N

close() N

open() N

open() N

read()
write() N

close() N

close() N

open() N

open() N

close() N

close() N

Program 1.
NORMAL

Program 3.
NORMAL+COLLECT

Program 5.
NORMAL+RW

Program 4.
WSC+RW

open() N

open() N

read() N

write() N

close() N

close() N

Program 2.
WSC+COLLECT

read()
write() N

portion 1

portion 2

portion 4
portion 8portion 6

portion 10
portion 3

portion 5
portion 9

represents the execution of normal system calls

represents the execution of system calls to which we applied Wrapped System Call mechanism

Fig. 5. Program and Portion we measure in cp program

Impact of Wrapped System Call Mechanism on Commodity Processors 251

Then, we show the explanation of 11 portions we measure.

1. from open() to close() of NORMAL.
2. from open() to close() of NORMAL+COLLECT.
3. from open() to close() of WSC+COLLECT.
4. from open() to close() of NORMAL+RW.
5. from open() to close() of WSC+RW.
6. read() and write() part of NORMAL+COLLECT.
7. read() and write() part of WSC+COLLECT.
8. read() and write() part of NORMAL+RW.
9. read() and write() part of WSC+RW.

10. only write() of NORMAL+COLLECT.
11. only write() of WSC+COLLECT

We measured only write() in portion 10 and 11 to observe the effect of wrap-
ping system calls which refer to different data. While read() system call contains
disk access time, write() system call buffers access to the disk and enables us to ob-
serve the effect of WSC mechanism excluding disk access time. Also, we implemented
NORMAL+RW and WSC+RW and measured portion 6, 7, 8 and 9 to observe the ef-
fect of wrapping two types of system calls together. Then, we measured the whole cp
in portion 1, 2 and 3 to examine if WSC mechanism is effective or not in total. Also, we
measured portion 4 and 5 to examine the influence of wrappingread() and write()
system calls on cp total.

We measure clock cycles and the number of events such as L1 cache misses in every
portion. From these results, we investigate how WSC mechanism effects locality of
reference from the view point of I, II and III above.

4.2 Performance Evaluation

Table 3 shows the result of cp programs. In this case, WSC threshold is 8 and we do
cp transactions 100 times, which means N in Figure 5 is 100. The numbers in the row
“portion” correspond to the numbers of the explanation we show in subsection 4.1. The
row “#clocks” shows clock cycles, the row “L2$” shows L2 cache miss counts and
rows “ITLB”, and “DTLB” show the walk counts for ITLB and DTLB, respectively.
We measured these events with a performance monitoring tool perfctr [8].

In write() sections (portion 10 and 11), the clock cycles for WSC+COLLECT
write() are less than NORMAL+COLLECT write() in about 0.12 million cycles,
which is reduction to 83 % in clock cycles. The reduction of this 0.12 million cycles by
WSC mechanism is larger than the reduction estimated by using formula in section 3,
which is about 0.072 million cycles for 100 write() system calls. We consider this
improvement is achieved by enhanced locality of reference, therefore we measure the
number of events concerning memory hierarchies. As we expected, we can see the reduc-
tion of L2 cache misses, ITLB walks and DTLB walks in WSC+COLLECT write()
compared to NORMAL+COLLECT write(). Thus, we can say WSC mechanism is
effective even when each system call refer to different data. We changed the threshold
and measured portion 10 and 11 to compare the results with those of getpid(). Figure
6 shows the result, and we can see the same tendency as we see in Figure 3 that wrapping
more than 2 system calls is effective in clock cycles in Pentium 4.

252 S. Yamada, S. Kusakabe, and H. Taniguchi

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

1 2 4 8

ra
tio

 o
f W

SC
/N

O
RM

AL

of threshold

WSC
NORMAL

Fig. 6. Comparison of clock cycles (write())

In read/write section (portion 6, 7, 8 and 9), we can see the effect of wrapping dif-
ferent system calls by comparing portion 6 with 7 and 8 with 9. Both clock cycles and
number of events decrease in WSC version in both cases.

Finally, from portion 1, 2 and 3, we can say applying WSC mechanism to cp pro-
gram is effective in total. When we compare portion 2 with 3 to ignore the difference
of disk access pattern, the reduction in clock cycles is about 0.32 million cycles. As we
see in write() system call, we can see the reduction of L2 cache misses, ITLB walks
and DTLB walks. Therefore, we conclude that WSC mechanism for split-phase style
system calls is effective in exploiting locality of reference. We can see the similar result
from portion 4 with 5 and reach to the same conclusion.

Table 3. Results of cp program

portion #clocks L2$ ITLB DTLB

1. NOR 2,884,325 7378 511 136
2. NOR+COLLECT 2,588,200 8800 187 207
3. WSC+COLLECT 2,262,523 7740 81 120
4. NOR+RW 2,625,804 8264 227 200
5. WSC+RW 2,431,758 8118 128 197
6. NOR+COLLECT read/write 1,090,608 4385 112 69
7. WSC+COLLECT read/write 876,703 3503 37 42
8. NOR+RW read/write 1,096,045 3875 130 72
9. WSC+RW read/write 985,227 3647 70 62
10. NOR+COLLECT write 686,883 1779 93 28
11. WSC+COLLECT write 569,206 1363 41 13

5 Conclusions

In this paper, we discussed our WSC mechanism in CEFOS. While CEFOS is based
on a dataflow-like fine-grain multithreading model, WSC mechanism is effective in
improving throughput even on commodity platforms which have no explicit support to
dataflow-like fine-grain multithreading.

Impact of Wrapped System Call Mechanism on Commodity Processors 253

Today, many investigation have been made about utilizing multithreading proces-
sor, such as SMT. Many of them tackle with memory hierarchy problem because cache
conflict often occurs under the condition where several threads run concurrently. One
effective solution to this problem is improving the scheduling of thread, which is con-
ventional Pthread, to utilize CPU resources more effectively[9]. On the other hand, our
work split conventional thread and control the thread in user process. Thus, we have
more chances to schedule fine-grained threads more flexibly with smaller overhead.

In cp program, the combination of our split-phase style system calls and WSC mech-
anism is effective in improving throughput by reducing mode changes and penalties
concerning memory hierarchies such as L2 cache misses and TLB walks.

Recently, the overhead of system call and context switch is increasing on commodity
processors. Besides, we think the tendency continues that latency of memory access be-
comes bottleneck, which is coming from the gap between processor speed and memory
speed. Therefore, we think WSC will be more effective in the future, which can reduce
the overhead of system call and context switch and enhance the locality of reference.
We believe this will contribute to higher throughput of internet server and large-scale
computation in the future. Our future work includes collecting more data from other
processors and exploiting the effect of SYSENTER/SYSEXIT command in x86 archi-
tecture.

References

1. Culler, D.E., Goldstein, S.C., Schauser, K.E., von Eicken, T.: Tam – a compiler controlled
threaded abstract machine. Journal of Parallel and Distributed Computing 18, 347–370 (1993)

2. Kusakabe, S., et al.: Parallel and distributed operating system cefos. IPSJ ISG Tech. Notes,
99(251), 25–32 (1999)

3. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis (1996),
http://www.bitmover.com/lm/lm-bench

4. Behren, R., et al.: Revising old friends: Capriccio: scalable threads for internet services. In:
Proc. of the 19th ACM symposium on Operating systems principles, pp. 268–281 (2003)

5. Thomas, E.A., et al.: Scheduler activation: Effective kernel support for the user-level manage-
ment of parallelism. In: Proc. of the 13th ACM Symp. on OS Principles, pp. 95–109 (1991)

6. Purohit, A., et al.: Cosy: Develop in user-land, run in kernel-mode. In: Proc. of HotOS IX:
The 9th Workshop on Hot Topics in Operating Systems, pp. 109–114 (2003)

7. Taniguchi, H.: Drd: New connection mechanism between internal kernel and external kernel.
Tran. of IEICE, J85-D-1(2) (2002)

8. Petterson, M.: Perfctr (nd), http://user.it.uu.se/∼mikpe/linux/perfctr/
9. Snavely, A., Tullsen, D.: Symbiotic jobscheduling for a simultaneous multithreading proces-

sor. In: 9th International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 234–244 (2000)

http://www.bitmover.com/lm/lm-bench
http://user.it.uu.se/~mikpe/linux/perfctr/

PART IV

Information Systems and
Data Management

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 257–269, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adding More Support for Associations to the ODMG
Object Model

Bryon K. Ehlmann

Department of Computer Science, Southern Illinois University Edwardsville
Edwardsville, IL 62026 U.S.A.

behlman@siue.edu

Abstract. The Object Model defined in the ODMG standard for object data
management systems (ODMSs) provides referential integrity support for one-
to-one, one-to-many, and many-to-many associations. It does not, however,
provide support that enforces the multiplicities often specified for such associa-
tions in UML class diagrams, nor does it provide the same level of support for
associations that is provided in relational systems via the SQL references
clause. The Object Relationship Notation (ORN) is a declarative scheme that
provides for the specification of enhanced association semantics. These seman-
tics include multiplicities and are more powerful than those provided by the
SQL references clause. This paper describes how ORN can be added to the
ODMG Object Model and discusses algorithms that can be used to support
ORN association semantics in an ODMG-compliant ODMS. The benefits of
such support are improved productivity in developing object database systems
and increased system reliability.

Keywords: ODMG Object Model, OODB systems, Constraint management,
Object Relationship Notation (ORN).

1 Introduction

An object data management system (ODMS) allows objects created and manipulated
in an object-oriented programming language to be made persistent and provides tradi-
tional database capabilities like concurrency control and recovery to manage access to
these objects. An object database management system (ODBMS), one type of ODMS,
stores the objects directly in an object database. An object-to-database mapping
(ODM), another type of ODMS, stores the objects in another database system repre-
sentation, usually relational [3].

The de facto standard for ODMSs is ODMG 3.0 [3], which was defined by the Ob-
ject Data Management Group (ODMG) consisting of representatives from most of the
major ODMS vendors. This standard defines an Object Model to be supported by
ODMG-compliant ODMSs. The model defines the kinds of object semantics that can
be specified to an ODMS. These semantics deal with how objects can be named and
identified and the properties and behavior of objects. They also deal with how objects
can relate to one another, which is the focus of this paper.

258 B.K. Ehlmann

In addition to supporting generalization-specialization relationships, the Object
Model supports one-to-one, one-to-many, and many-to-many binary relationships be-
tween object types. These are the non-inheritance, or structural, types of relationships,
which are termed associations in the Unified Modeling Language (UML) [16]. For
example, a one-to-many association between carpools and employees can be defined
in the Object Model. A carpool object is defined so that it can reference many em-
ployee objects, and an employee object is defined so that it can reference at most one
carpool.

The Object Model prescribes that the ODMS automatically enforce referential in-
tegrity for all defined associations. This means that if an object is deleted, all refer-
ences to that object that maintain associations involving that object must also be
deleted. This ensures that there are no such references in the database that lead to non-
existent objects.

What has just been described is the extent of support for associations in the Object
Model. What is lacking is some additional, easily implementable support for associa-
tions that could significantly improve the productivity of developing object database
systems and the reliability of those systems.

For example, the Object Model, like the relational model, does not support the
specification of precise multiplicities. Such association constraints are almost always
present in the diagrams used to model databases—the traditional Entity-Relationship
Diagram (ERD) [4], where multiplicities are termed cardinality constraints, and the
UML class diagram [16]. For example, the multiplicity for the Employee class in the
carpool–employee association may be given as 2..* in a class diagram, meaning that a
carpool must be related to two or more employees. Such association semantics,
documented during conceptual database design, are sometimes lost during logical da-
tabase design unless supported by the logical data model, e.g., the Object Model. If
not supported, to survive, they must be resurrected by the programmer during imple-
mentation and for object databases translated into cardinality checks on collections
and into exception handling code within relevant create and update methods.

The Object Model also does not support association semantics that are equivalent
to those supported in standard relational systems via the references…on delete clause
of the create table statement in SQL [5]. Such semantics would, for instance, allow
one to declare an association between objects such that if an object is deleted, all re-
lated objects would be automatically deleted by the ODMS, i.e., an on delete cas-
cade. For example, if an organization in a company were deleted, all subordinate or-
ganizations would be implicitly deleted. Such an association semantic is required for
an ODMS to provide support for composite objects.

Object Relationship Notation (ORN) was developed to allow these kinds of seman-
tics, and others often relevant to associations, to be better modeled and more easily
implemented in a DBMS [6], [8], [9]. ORN is a declarative scheme for describing as-
sociation semantics that is based on UML multiplicities.

In this paper we give a brief overview of ORN and show how the ODMG Object
Model can be extended to include ORN. We also discuss and illustrate algorithms that
are available and can be used by an ODMG-compliant ODMS to implement the asso-
ciation semantics as specified by ORN. The extension is very straightforward, and the
algorithms are relatively simple. The end-result is an enhanced Object Model that
supports more powerful association semantics—in fact, more powerful than those

 Adding More Support for Associations to the ODMG Object Model 259

supported by relational systems without having to code complex constraints and trig-
gers [6]. By extending models with ORN and providing the required mappings be-
tween them—UML class diagram to Object Model to ODMS implementation—we
facilitate a model-driven development approach and gain its many advantages [13].

The specific benefits here are a significant improvement in the productivity of de-
veloping object database applications and an increase in their reliability. Productivity
is improved when translations from class diagram models into object models are more
direct and when programmers do not have to develop code to implement association
semantics. Currently, many developers working on many database applications must
implement, test, and maintain custom code for each type of association, often “rein-
venting the wheel.” Reliability is increased when the ODMS is responsible for enforc-
ing association semantics. Currently, developers sometimes fail to enforce these se-
mantics or inevitably introduce errors into database applications when they do.

The remainder of this paper is organized as follows: section 2 gives a brief over-
view of ORN and related work, section 3 shows how the ODMG Object Model can be
extended with the ORN syntax and describes ORN semantics in terms of this model,
section 4 discusses and illustrates algorithms that can be used to implement ORN se-
mantics in an ODMS that is based on the extended Object Model, and section 5 pro-
vides concluding remarks. A complete set of ORN-implementing algorithms is avail-
able on the author’s website [12].

2 ORN and Related Work

ORN describes association semantics at both the conceptual, i.e., data modeling, and
logical, i.e., data definition, levels of database development, and can be compared to
other declarative schemes.

For data modeling, ORN has been integrated into ERDs and UML class diagrams
[10]. ORN extends a class diagram by allowing binding symbols to be given with
multiplicity notations. The bindings indicate what should happen when links between
related objects are destroyed, either implicitly because of object deletions or explic-
itly. They indicate, for instance, what action the DBMS should take when destroying
a link would violate the multiplicity at one end of an association. The binding sym-
bols (or the lack of them) provide important semantics about the relative strength of
linkage between related objects and define the scope of complex objects. For example,
the association between a carpool, a complex object, and its riders can be specified in
an ORN-extended class diagram to indicate that if the number of riders falls below
two, either because an employee leaves the company (an employee object is deleted)
or just leaves the carpool (a link between an employee and a carpool is destroyed), the
carpool should be deleted.

For database definition, ORN has been implemented within the Object Database
Definition Language (ODDL). ODDL is a language used to define classes, attributes,
and relationships to a prototype ODMS named Object Relater Plus (OR+) [7]. OR+
closely parallels ODMG and is built on top of Object Store [15]. The integration of
ORN into ODDL allows a direct translation of association semantics from an ORN-
extended class diagram into the database definition language and enables these se-
mantics to be automatically maintained by the DBMS. Using ORN, the semantics for

260 B.K. Ehlmann

an association between employees and carpools as previously described can be both
modeled and implemented by the notation |~X~<2..*-to-0..1>. No programming is
needed.

In [6], the power of ORN in describing association semantics is compared to that of
other declarative notations proposed for various object models and to that of the refer-
ences clause of SQL. The comparison reveals that the most unique aspect of ORN, and
what accounts for its ability to specify a larger variety of association types, is that it pro-
vides for the enforcement of upper and lower bound multiplicities and allows delete
propagation to be based on these multiplicities. It also provides a declarative scheme at a
conceptual level of abstraction that is independent of database type, object or relational.
ORN can also be compared to extensions to the ER model that others have suggested to
specify or enforce association semantics, or structural integrity constraints [1], [2], [14].
These extensions, however, are more procedural in nature.

3 Adding ORN to ODL

3.1 Associations in ODL

In the ODMG Object Definition Language (ODL), which defines the ODMG Object
Model, an association is defined by declaring a relationship traversal path for each
end of the association. A traversal path provides a means for an object of one class to
reference and access the related objects of a target class (which is the same class in a
recursive relationship). Access to many target class objects requires the traversal path
declaration to include an appropriate collection type, usually a set or list, that can con-
tain references of target class type. Access to at most one target class object requires
the declaration to include a reference of target class type.

Fig. 1. Class diagram for employee–carpool association

Fig. 2. ODL for employee–carpool association

 Adding More Support for Associations to the ODMG Object Model 261

A traversal path declaration must also include the name of its inverse traversal
path. For example, the one-to-many relationship between carpools and employees,
discussed earlier and modeled by the class diagram in Fig. 1, would be declared in
ODL as shown in Fig. 2. The 2.* multiplicity given in the class diagram must be im-
plemented by application code.

3.2 Adding ORN Syntax

Adding ORN to the Object Model is relatively straightforward. Essentially, ODL is
extended to allow an <association> to be given for each declared relationship. The
syntax for an <association>, which is the syntax for ORN, is given in Fig. 3, and the
ORN-extended ODL syntax is given in Fig. 4.

To illustrate the syntax and semantics of ORN in the context of the Object Model,
a database containing the employee–carpool association as well as two other associa-
tions is modeled by the ORN-extended class diagram given in Fig. 5. In such a dia-
gram, the ORN bindings for a class (or role) in an association are given as stereotype
icons at the association end corresponding to that class (or role). When no binding
symbols are given for an association end (or role), default bindings are assumed, the
semantics of which will be defined later.

The database modeled in Fig. 5 is implemented by the ORN-extended ODL given
in Fig. 6.

If an <association> is not given for a relationship in ODL (see Fig. 4), the default
<association> is <0..1-to-0..1> for a one-to-one, <0..1-to-*> for a one-to-many, and
<*-to-*> for a many-to-many relationship. These defaults give relationships the same
semantics as they have in the existing Object Model.

An <association> given for a relationship need only be given for one of the tra-
versal paths. If given for both, the <association>s must be inverses of each other. For
example, an <association>, if given for riders in Fig. 6, must be given as <0..1-to-2..*>
|~X~.

Fig. 3. ORN syntax diagrams

262 B.K. Ehlmann

Fig. 4. Updated BNF for a relationship in ODL

Fig. 5. ORN-extended UML class diagram

When an <association> is given for a traversal path tp in class C, the multiplicity and
binding given after the -to- apply to tp and to the target class, the multiplicity and binding
given before the -to- apply to the inverse tp and to class C. For example, in Fig. 6, the
multiplicity 0..1 and default bindings apply to the traversal path carpool and the target
class Carpool, and the multiplicity 2..* and binding |~X~ apply to the traversal path riders
and class Employee. If the multiplicity given for a traversal path in an <association> im-
plies “many,” then the type of that traversal path must be a collection.

Fig. 6. ODL for class diagram shown in Fig. 5

 Adding More Support for Associations to the ODMG Object Model 263

The last issue to address in extending ODL is association inheritance. In the Object
Model, a relationship can be inherited by a class via the extends relationship. For ex-
ample, the declaration class SalesPerson extends Employee { ... } would mean that
the SalesPerson class inherits the attributes, relationships, and behavior of the Em-
ployee class. Thus, the carpool traversal path as declared in the Employee class in Fig.
6 would be inherited by the SalesPerson class, allowing sales people to join carpools.
When a relationship is inherited by a class, all of the semantics defined by its <asso-
ciation>, given or defaulted, are also inherited.

And, of course, the semantics of all <association>s defined in the ODL—defaulted,
given, or inherited—must be maintained by the ODMS.

3.3 ORN Semantics in ODL Context

The semantics of the <multiplicity>s in an <association> are identical to those of the
multiplicities defined in UML [16]. The semantics of the <binding>s are given in
Table 1.

Previous papers have described ORN semantics conceptually in terms of ER and
class diagrams, e.g. [10]. The reader may review these papers for a more detailed dis-
cussion of ORN. Here, we focus more on describing ORN semantics in terms of the
Object Model, or ODL. Thus, instead of “association links” being conceptually “cre-
ated” and “destroyed,” “relationship references” (or, alternatively, “traversal path ref-
erences”) are “formed” and “dropped.” Dropping a relationship or traversal path ref-
erence also means dropping the corresponding inverse reference (in the inverse tra-
versal path). Also, bindings and multiplicities are now associated with traversal paths
as well as with the related classes. This is convenient for identifying bindings and
multiplicities in recursive relationships since the subject class and related class, now
called the “target class,” are the same. Traverse path names can be equated to role
names given in UML class diagrams. In Table 1, traversal path names tpA and tpB are
also role names in the class diagram for relationship R.

As indicated in Table 1, association semantics are derived from multiplicity seman-
tics and the semantics of the given bindings. For example, in the |~X~<2..*-to-0..1>
association between employees and carpools, the |~ symbol in the <binding> for the
Employee class means (from Table 1): on delete of an Employee object, a carpool ref-
erence (see Fig. 6) can be implicitly dropped; however, when this violates the multi-
plicity 2..*, the target Carpool object must be implicitly deleted. The X~ symbol
means: a carpool reference can be explicitly dropped; however, when this violates
multiplicity 2..*, the target Carpool object must be implicitly deleted. The multiplicity
2..* is violated when a reference to one of just two employees in a carpool, i.e., one of
just two references in the set riders, is dropped. The default <binding> for the Carpool
class means (again, from Table 1): on delete of a Carpool object, a reference in riders
(see Fig. 6) can be implicitly dropped provided this does not violate multiplicity 0..1,
and a reference in riders can be explicitly dropped provided this does not violate mul-
tiplicity 0..1. A 0..1 multiplicity is never violated by dropping a reference in riders (or
a carpool reference for that matter).

264 B.K. Ehlmann

Table 1. ORN binding semantics for the Object Model

⎯⎯⎯
<binding> semantics:
Given in terms of a subject class A in a relationship R
having multiplicity m and <binding> b. R relates ob-
jects in class A to objects in a related, or target, class B.

R is implemented in the Object Model by a traversal
path A::tpA and inverse traversal path B::tpB. The type
of tpA is B or some suitable collection of B (shown here
as B), and the type of tpB is A or some suitable collec-
tion of A (shown here as set<A>). The binding for tra-
versal path tpB is b and the multiplicity is m. Forming
or dropping a tpA reference from an A object to a B ob-
ject includes forming or dropping, respectively, its cor-
responding inverse tpB reference from object B to the A
object.

A | in b symbolizes a “cut” and denotes the implicit destruction, i.e., dropping, of an existing tpA reference
that must occur on deletion of an A object. An X in b symbolizes an eXplicit “X out” and denotes the ex-
plicit destruction, i.e., dropping, of a tpA reference.† Deletion of a A object succeeds only if all existing re-
lationship references from/to that object are implicitly destructible. Also, the deletion of an A object or the
dropping of a tpA reference succeeds only if all required implicit deletions succeed.

<d-s> semantics:
A <d-s>, i.e., destructibility symbol, in b has the meaning given below. If a <d-s> is given after a |, this
meaning applies to implicit destruction; if given after an X, it applies to explicit destruction; and if given
alone, it applies to both. If no <d-s> is given for implicit destruction, explicit destruction, or both, it im-
plies default destructibility for whichever.

(No <d-s> given) Default destructibility. A tpA reference can be dropped provided this does not violate m.*

- Minus destructibility. A tpA reference cannot be dropped.
~ Propagate destructibility. A tpA reference can be dropped; however, when this violates m, the target

object must be implicitly deleted.
' Prime destructibility. A tpA reference can be dropped; however, after being dropped, an implicit delete

must be attempted on the target, i.e., subordinate, object. This implicit deletion is required if and only if
its failure and resultant undoing would violate m.*

! Emphatic prime destructibility. A tpA reference can be dropped, but the target, i.e., subordinate, object
must be implicitly deleted.

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

† - A tpB reference change done as a single operation that replaces an A object with another is not treated as an explicit ref-
erence destruction relative to class A.

* - The check for a violation is deferred until the end of the current complex object operation.
⎯⎯⎯

Below are more of the association semantics that are modeled in Fig. 5 and imple-
mented in Fig. 6. They are described both conceptually and, within brackets, in terms
of Object Model.

• If an employee [Employee object] is deleted, the link to the employee’s organiza-
tion is implicitly destroyed [the object’s organization reference to its target Or-
ganization object is implicitly dropped] (default binding and * multiplicity).

• If an organization [Organization object] is deleted, all descendant organizations
[Organization objects recursively referenced via children] are implicitly deleted ('
binding); however, an organization is not deleted if it has any employees [if work-
ers references any Employee objects] (default binding and 1 multiplicity).

 Adding More Support for Associations to the ODMG Object Model 265

• If a link between organizations is destroyed [if a children reference (or its inverse
parent reference) is dropped], the child organization and all descendant organiza-
tions [Organization objects recursively referenced via children] are implicitly de-
leted (' binding); however, again, an organization is not deleted if it has any em-
ployees (default binding and 1 multiplicity).

4 Implementing ORN

The implementation of ORN semantics in an ODMG-compliant ODMS is described
by giving the algorithms required to create and delete objects and form and drop rela-
tionship references. These operations become complex object operations in the con-
text of ORN. This means they may no longer involve just one object or relationship
reference but may involve many objects, relationships, and relationship references in
the scope of a complex object.

In [12], we give the algorithms for these operations by providing all related pseu-
docode, with commentary, for the ObjectFactory::new() and Object::delete() methods,
which are associated with an object, and the C::form_tp() and C::drop_tp() methods,
which are associated with a declared traversal path tp in a user-declared class C.
These methods are defined as part of the Object Model (see Chapter 2 of [3]).

In this section, due to space constraints, we discuss these algorithms in general and
illustrate them by giving the algorithm for just the Object::delete() method. The pseu-
docode shown in this section is about one quarter of that given in [12].

The algorithms have been developed by reverse engineering the code for imple-
menting ORN within OR+. This is the same code executed when one uses the ORN
Simulation, a web-based, prototype modeling tool [11]. Thus, the algorithms are well-
tested but have a slightly different wrapping.

Their implementation of ORN semantics is noncircular and unambiguous in the
presence of association cycles. By noncircular, we mean the processing of traversal
paths always terminates. By unambiguous, we mean the results of a complex object
operation are independent of the order in which traversal paths and the references in
these paths are processed. This is true as long as an <association> does not have a |–
binding on just one end and is discussed in detail and proved in [9].

As stated in the introduction, the algorithms are relatively simple; however, they
depend on the ODMS implementation supporting a nested transaction capability.
Nested transactions are needed to implement the semantics of the ' (prime) binding
and are desirable so that the system can check multiplicity violations at the end of a
complex object operation, undoing the operation upon any exception and thus making
the complex object operation atomic. The Object Model defines a Transaction Model,
which does not provide nested transactions. So, before giving the algorithms for the
complex object operations in [12], we extend the Transaction Model to support nested
transactions, at least for the purpose of implementing the ODMS. We assume such
support for nested transactions and give algorithms for transaction methods, focusing
on the actions required to support ORN semantics.

All methods are assumed to execute in the context of a opened database d, and
methods new(), delete(), form_tpA(), and drop_tpA() are assumed to execute within the
scope of a user-defined transaction.

The pseudocode that expresses the algorithms is some mixture of ODL, C++, Java,
and English. We have tried to stick as close as possible to the conventions of ODL.

266 B.K. Ehlmann

Indention indicates control structure, with appropriate end’s often used to terminate
compound statements. The try...handle...end handle control structure for exception
handling is similar to Java’s try {...} catch {...}. Methods for a class are introduced with
a header of the form Method <variable>.<method name>(...), where the <variable> is
used in the body of the method to refer to the object on which the method is invoked,
i.e., the implicit parameter and this object in C++ and Java. A <method name> begins
with an underscore if it is to be invoked only by the ODMS implementation.

The algorithms are expressed using the variables defined in Table 1.
Fig. 7 gives the delete() method and two methods that it uses, _try_delete() and

_enforce_binding(). The given delete() replaces the primitive delete() method as cur-
rently defined in the Object Model.

The remainder of this section briefly explains the pseudocode in Fig. 7. For a more
detailed explanation and for the pseudocode of all methods invoked by the delete() al-
gorithm, see [12].

The algorithm for delete() uses these functions:

Type(o) – the type, or class, of object o, which is the most specific type of o in any type
hierarchy.

Inverse(tp) – the inverse traversal path of tp.
LbM(tp) – the lower bound multiplicity for tp in the <association> for the relationship

represented by traversal path tp.
ImpB(tp) – the implicit destructibility binding for tp (minus any | symbol) in the <asso-

ciation> for the relationship represented by traversal path tp.
Refs(o.tp) – the number of references in o.tp, which, if tp is a collection, is the cardinality

of the collection, i.e., o.tp.cardinality() and, if tp is a reference, is 0 if nil and 1 if not.

The delete() method provides a nested transaction that embeds the complex object
operation, permitting its effects on the database to be undone if an exception occurs.

Fig. 7. Method delete() in interface Object

 Adding More Support for Associations to the ODMG Object Model 267

The _try_delete() method is an indirectly recursive method that may result in the
implicit deletion of many objects that are related directly or indirectly to the object
upon which it is invoked, designated here as a. Its invocation on an object must be
dynamically bound to the method on the class representing the object’s most specific
type. This ensures that _try_delete() processes all traversal path instances involving
the object.

The method first checks that object a has not already been marked for deletion by
invoking the _deleted() method on the current transaction. If it has, _try_delete() sim-
ply exits. If not, it marks object a for deletion by invoking _mark_for_deletion().

The outer for each loop traverses every traversal path tpA defined in (or inherited
by) class A. For each such path in object a, the inner for each traverses all references
in the traversal path. The purpose here is to attempt to implicitly drop each reference
to a target object b (including the inverse reference to a) so that object a can be de-
leted. The code first drops each such reference by invoking the _primitive_drop_tpA
method on a, which drops a.tpA’s reference to b and b.tpB’s reference to a. It then in-
vokes the method _enforce_binding() on the target object b to enforce the implicit de-
structibility binding ImpB(tpB) for the inverse traversal path tpB.

The last step of _try_delete() actually deletes the object but only if none of the
_enforce_binding() invocations raise an exception.

The _enforce_binding() method is assumed for simplicity to be defined in the inter-
face Object. The method for one class in a relationship must be accessible to the other
class. The method enforces the destructibility binding semantics specified in Table 1.
Here, b denotes the implicit parameter and tpB denotes the explicit parameter since
_enforce_binding() is invoked on a target object to enforce the binding for the inverse
traversal path in that target object. It is invoked after a reference to target object b and
its inverse reference in the traversal path tpB have been dropped by the caller. The
case statement executes the appropriate code for the given binding. The method
_check_path_at_commit() is invoked to ensure that a lower bound constraint is re-
checked at the end of the complex object operation, i.e., within commit() of the cur-
rent, nested transaction.

5 Conclusions

In this paper, we have proposed adding ORN to the ODMG Object Model and have
referenced, illustrated, and discussed algorithms for implementing ORN semantics in
an ODMS. The shortcomings of our proposal are that the Object Model is made
slightly more complex and ODMS implementations must include a nested transaction
capability. Despite these shortcomings and regardless of whether or not ORN is added
to the ODMG standard, we believe that vendors should strongly consider including
ORN as an extended feature to their ODMSs. We conclude by summarizing the rea-
sons:

• ORN is a simple notation that allows the database developer to specify a variety of
association semantics, which define the scopes of complex and composite objects.

• The extended ODL would facilitate a straightforward mapping of association se-
mantics from a conceptual database model, expressed as an ORN-extended UML
class diagram, to the logical database model, expressed in the ODL.

268 B.K. Ehlmann

• The ODMS would provide the same support for associations that is provided by
relational DBMSs via the SQL references clause plus support even more powerful
association semantics—for instance, “referential actions” that are based on multi-
plicities, and also three flavors of “on delete cascade,” all of which are highly de-
sirable in describing association semantics.

• If no <association> is given for a traversal path, the default <association> corre-
sponds to current system capabilities. Thus, adding ORN is a pure extension re-
quiring no changes to the underlying Object Model capabilities.

• The implementation of this extension is relatively simple as shown by the algo-
rithms we have made available and their implementation in OR+.

• The benefits are increased database development productivity and improved data-
base integrity as much less code needs to be developed and maintained by data-
base application developers.

Acknowledgements

This work was partially supported by the NSF co-operative agreement HRD-9707076.

References

1. Balaban, M., Shoval, P.: MEER – A EER model enhanced with structure methods. Infor-
mation Systems 27(4), 245–275 (2002)

2. Bouzeghoub, M., Metais, E.: Semantic modeling and object oriented databases. In: Proc.
17th Int’l VLDB Conference, Barcelona, Spain, pp. 3–14 (1991)

3. Cattel, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O.,
Sta-nienda, T., Velez, F.: The Object Database Standard: ODMG 3.0, San Mateo, CA.
Morgan Kaufmann, San Francisco (2000)

4. Chen, P.P.: The entity-relationship model: towards a unified view of data. ACM Transac-
tions on Database Systems 1(1), 1–36 (1976)

5. ANSI. Information technology - Database languages - SQL, Parts 1-4, American National
Standards Institute (ANSI) (2003), New York, http://www.ansi.org

6. Ehlmann, B.K., Riccardi, G.A.: A comparison of ORN to other declarative schemes for
specifying relationship semantics. Information and Software Technology 38(7), 455–465
(1996)

7. Ehlmann, B.K., Riccardi, G.A.: Object Relater Plus: A Practical Tool for Developing En-
hanced Object Databases. In: Proc. 13th Int’l Conference on Data Engineering, Birming-
ham, England, pp. 412–421 (1997)

8. Ehlmann, B.K., Rishe, N., Shi, J.: The formal specification of ORN semantics. Information
and Software Technology 42(3), 159–170 (2000)

9. Ehlmann, B.K., Riccardi, G.A., Rishe, N., Shi, J.: Specifying and enforcing association
semantics via ORN in the presence of association cycles. IEEE Transactions on Knowl-
edge and Data Engineering 14(6), 1249–1257 (2002)

10. Ehlmann, B.K., Yu, X.: Extending UML class diagrams to capture additional association
semantics. In: Proc. 20th IASTED Int’l Conf. on Applied Informatics, Innsbruck, Austria,
pp. 395–401 (2002)

 Adding More Support for Associations to the ODMG Object Model 269

11. Ehlmann, B.K.: A data modeling tool where associations come alive. In: Proc. 21st
IASTED Int’l Conf. on Modelling, Identification, and Control, Innsbruck, Austria, pp. 66–
72 (2002), http://www.siue.edu/~behlman

12. Ehlmann, B.K.: Algorithms for the implementation of ORN in an ODMG-compliant
ODMS (2006), http://www.siue.edu/~behlman

13. Mellor, S.J., Clark, A.N., Futagami, T.: Guest editor’s introduction: Model-Driven Devel-
opment. IEEE Software 20(5), 19–25 (2003)

14. Lazarevic, B., Misic, V.: Extending the entity-relationship model to capture dynamic be-
havior. European Journal of Information Systems 1(2), 95–106 (1991)

15. Progress Software. ObjectStore Interprise. Bedford, MA: Progress Software (2006),
http://www.objectstore.com/datasheet/index.ssp

16. OMG. Unified Modeling Language (UML) Specification. Version 2.0. Object Manage-
ment Group (OMG) (2005), http://www.uml.org

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 270–278, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Measuring Effectiveness of Computing
Facilities in Academic Institutes:

A New Solution for a Difficult Problem

Smriti Sharma1 and Veena Bansal2

Department of Industrial & Management Engineering
Indian Institute of Technology, Kanpur, U.P., India

smriti.sh@gmail.com, veena@iitk.ac.in

Abstract. There has been a constant effort to evaluate the success of Informa-
tion Technology in organizations. This kind of investment is extremely hard to
evaluate because of difficulty in identifying tangible benefits, as well as high
uncertainty about achieving the expected value. Though a lot of research has
taken place in this direction, but not much is written about evaluating IT in non-
profit organizations like educational institutions. Measures for evaluating suc-
cess of IT in such kind of institutes are markedly different from that of business
organizations. The purpose of this paper is to build further upon the existing
body of research by proposing a new model for measuring effectiveness of
computing facilities in academic institutes. As a baseline, Delone & McLean’s
model for measuring the success of Information System [2], [3] is used, as it is
the most pioneering model in this regard.

Keywords: Computing Facilities, Usability, Functional Utility, User Satisfac-
tion, Individual and Organizational Impact.

1 Introduction

Given the crucial role of education in development and the expansion of Information
and Communication technology in the global economy, the role of IT in education
cannot be ignored. Of late there has been a major surge in the use of IT in the territory
of education. This, at the same time, has raised the questions- How effective is IT in
academic institutions? How to measure the effectiveness/ success of IT in educational
institutions? Effectiveness is concerned about the impact of the information provided
in helping users do their job. It is important to evaluate the impact of the IT on the
organization as a whole rather than looking at the quality of the system, user satisfac-
tion or by looking at a narrow financial perspective of the evaluation.

The difficulties in effectively evaluating the impact of information systems are
widely acknowledged in the IS literature [2], [8], [9].

Evidence suggests that poor performance of the IS function is a serious inhibitor to
good business performance [1]. Better use of information, both internal and external,
relates positively to profitability [7].

 Measuring Effectiveness of Computing Facilities in Academic Institutes 271

A lot of research has been undertaken in this regard to develop frameworks for
measurement of Information Systems’ success. Economic and quantitative measures
for the success of IS, however, are difficult to obtain. Researchers and practitioners
alike often rely on subjective assessment and surrogate measures, such as end-user
computing satisfaction (EUCS) instrument.

Saunders and Jones [4] developed the "IS Function Performance Evaluation
Model" which was used to describe how measures should be selected from the multi-
ple dimensions of the IS function relative to specific organizational factors and based
on the perspective of the evaluator.

The model proposed by Delone et al [2], [3] to measure the effectiveness of Infor-
mation System is the most pioneering work in this regard. DeLone and McLean In-
formation Systems (IS) Success Model is a framework and model for measuring the
complex-dependent variable in IS research. It concludes with a model of "temporal
and causal" interdependencies between their six categories of IS success- Information
Quality, System Quality, Use, User Satisfaction, Individual Impact, and Organiza-
tional Impact.

Their model depicts the relationships of the 6 IS success dimensions. They contend
that System Quality and Information Quality singularly and jointly affect both Use
and User Satisfaction. Additionally, the amount of Use can affect the degree of User
satisfaction. Use and User Satisfaction are direct antecedents of Individual Impact;
and lastly, this impact on individual performance should eventually have
some Organizational Impact. This model was later on validated by many researchers
including Seddon and Kiew [6], who tested the causal structure of the model.

Inspite of being the most complete and a better known model some shortcomings
have been sighted in this model by researchers. It does not take into consideration the
effect of extraneous variables both internal and external to the organization. They
themselves accept that it is necessary to include the organization type and its envi-
ronment into context before applying this model.

In the light of the above argument, we have made an attempt to modify Delone and
McLean’s model to make it relevant for measuring the effectiveness of computing
facilities in academic institutes. Information Quality and System Quality have been
replaced by Usability and Functional Utility. Use construct is omitted from the pro-
posed model. Measures for evaluating success of IT in such kind of institutes are
markedly different from that of business organizations. Therefore, for capturing Indi-
vidual Impact and Organizational Impact measures suitable in the context of academic
institutes have been introduced.

2 Proposed Model

Following modifications have been proposed in the Delone & McLean’s model.

Replacing System Quality and Information Quality. We are concerned with meas-
uring effectiveness of all the computing facilities of an academic institute unlike [2]
where focus is on an individual Information System. Therefore, System Quality and
Information Quality have been replaced by Usability and Functional Utility.

272 S. Sharma and V. Bansal

Omission of Use Construct. A main criticism of Delone and McLean has centered on
the Use construct. It is considered to be an inappropriate measure of IS success. Its im-
plication is that if a system is used, it must be useful, and therefore successful. Take the
example of an expensive design software, which is used only by handful of students. If
this software helps these students to produce some excellent research work, it will be
considered as an asset for the institute, irrespective of the number of students using it.
Hence, Use construct was considered as inappropriate in this context.

Taking the points mentioned above into consideration, the proposed model in-
cludes the following five constructs- Usability, Functional Utility, User Satisfaction,
Individual Impact and Organizational Impact. The relationship between the constructs
is as shown in Fig. 1.

Usability

Functional
Utility

User
Satisfaction

Individual
Impact

Organizational
Impact

Fig. 1. Proposed model

This model shows the interdependent nature of success categories used.
Usability measures the extent to which the computing facilities match user charac-

teristics and the skills for the tasks concerned. Functional Utility focuses on how well
the computing facilities meet the requirements of the users. It also measures the
availability, accuracy and up-to–datedness of the information obtained from the use of
computing facilities. User satisfaction is the most extensively used single measure for IS
evaluation [2]. End-user’s feelings of satisfaction arise when he or she combines his or
her perception of and valuation of discrepancy regarding desires and expectations from
the use of computing facilities. Individual Impact and Organizational Impact indicate
the impact of computing facilities on individual performance and organizational per-
formance, respectively. Measures used for Individual Impact are concerned with evalu-
ating the impact of computing facilities on an individual in learning, course work, re-
search work, planning and decision making, communication and overall productivity.
Likewise, Measures of Organizational Impact evaluate the impact of comporting facili-
ties on the organizational as a whole in the following respects- innovation, research
quality, pass rate/grades, decision making, image of the institute, capacity in terms of
students, and overall productivity of the institute.

3 Model Validation

Aim of testing this model was to provide an empirical evidence for the relationships be-
tween the five constructs used in the proposed model. We conducted a self-administered

 Measuring Effectiveness of Computing Facilities in Academic Institutes 273

survey to collect the primary data from the target population, which consisted of students
and faculty of five academic institutes.

For the survey, a questionnaire was designed based on discussions with students
and faculty and literature. Respondents were asked to fill the questionnaire in the con-
text of computing facilities used in their institutes.

Questionnaire contained five sets of questions to measure the five constructs of the
model.

Questions were framed by discussions with students and faculty of various aca-
demic institutes and available literature. To evaluate the first construct Usability, a set
of four questions was used. For measuring Functional Utility six questions were
framed. Four questions on Overall Satisfaction were from Seddon and Yip [5]. To
measure Individual Impact and Organizational Usability measures the extent to which
the computing facilities match user characteristics and Impact group of five and six
questions were used, respectively.

Likert scale was used for measurement in which respondents indicate a degree of
agreement or disagreement with each of a series of statements about the stimulus ob-
jects. Each statement has been assigned seven response categories, ranging from 1 to
7. One signifies strong agreement, and seven means strong disagreement.

3.1 Data Collection

Questionnaires were administered personally to the students and faculty of the afore-
mentioned institutes. Total of 500 Questionnaires were distributed, out of which, 411
completed questionnaires were returned by the respondents. After screening of ques-
tionnaires to identify illegible, incomplete, or ambiguous responses, 31 questionnaires
were rejected. Total, 380 questionnaires were found suitable for data analysis. Treat-
ment of missing values was done by substituting a neutral value.

3.2 Data Analysis and Results

To establish the model, three regression models have been used:

• Multiple regression model with Usability and Functional Utility as inde-
pendent variables and User Satisfaction as dependent variable.

• Simple regression model with User Satisfaction as independent variable and
Individual Impact as dependent variable.

• Simple regression model with Individual Impact as independent variable and
Organizational Impact as dependent variable.

Using the abbreviations

X1 = Usability
X2 = Functional Utility
X3 = User Satisfaction
X4 = Individual Impact
X5 = Organizational Impact

the following linear regressions are considered

274 S. Sharma and V. Bansal

 X3 = b3.12+ b31.2 X1 + b32.1X2 (1)
 X4 = b4.3 + b43 X3 (2)
 X5 = b5.4 + b54 X4 (3)

The eq. (1) represents a multiple linear regression and (2) and (3) are simple linear
regressions, hereafter called Simple Regression 1 and Simple Regression 2 respec-
tively.

Here b3.12 , b4.3 and b5.4 are constants; b43 and b54 are regression coefficients
,b31..2 and b32.1 are partial regression coefficients. The suffix after the dot refers to the
variable held constant.

3.3 Hypotheses

The hypotheses to be tested are as follows:

H1: The partial regression coefficient b31..2 > 0
It is assumed that if the user finds the computing facilities easy to use, perceived

usefulness of the system will increase for him. This subsequently, will result into in-
creased User Satisfaction.

H2: The partial regression coefficient b32..1 > 0
Increase in Functional Utility will result into increased usefulness for the user and

hence increased satisfaction. The more the facilities meet the requirements of the user
the more will be the User Satisfaction

H3: The regression coefficient b43 > 0
This hypothesis states that if a student is more satisfied with the computing facili-

ties then it will have a more positive Individual Impact e.g. better learning or commu-
nication with students/faculty.

H4: The regression coefficient b54 > 0
Higher Individual Impact will result into higher Organizational Impact e.g. a posi-

tive effect of computing facilities on learning of individual students will result into
overall improvement in pass rate/ grades of the institute.

Data analysis was done using SPSS.

Table 1. Cronbach’s alpha

 No. of Items Cronbach alpha

Usability(X1) 4 .6790

Functional
Utility(X2)

6 .8479

User
Satisfaction(X3)

4 .8497

Individual
Impact(X4)

6 .8772

Organizational
Impact(X5)

7 .8796

 Measuring Effectiveness of Computing Facilities in Academic Institutes 275

High Cronbach’s alpha for all the variables in Table 1, except for Usability, which
is marginally less, is an indication of high internal consistency. Low value for Usabil-
ity can be attributed to lower number of items used to measure it.

Table 2. Pearson Correlation matrix

X1 X2 X3 X4 X5

Usability(X1) 1

Functional
Utility(X2)

.562 1

User
Satisfaction(X3)

.602 .815 1

Individual
Impact(X4)

.551 .774 .817 1

Organizational
Impact(X5)

.537 .722 .769 .812 1

Table 2 shows the Pearson Coefficient of Correlation between all the variables.
Pearson's correlation coefficient (r) is a measure of the strength of the association
between the two variables.

The coefficient of correlation between the constructs Usability and Functional Util-
ity is low, which indicates their independence. The coefficients of correlation are high
for the constructs Functional Utility and User Satisfaction; User Satisfaction and Indi-
vidual Impact; Individual Impact and Organizational Impact as suggested by the
model. However, it is on the lower side for the constructs Usability and User Satisfac-
tion, which suggests that dependence of User Satisfaction is higher on Functional
Utility as compared to Usability.

Table 3.

 R2 Adjusted R2 F
(p-value)

Multiple
Regression

.695 .693 428.747
(0)

Simple
Regression 1

.667 .666 757.880
(0)

Simple
Regression 2

.659 .658 729.581
(0)

276 S. Sharma and V. Bansal

The high values of t and F- statistic in all the cases strongly support the rejection of
the Null hypotheses, that the regression coefficients are zero. The regression coeffi-
cients except for b31.2 have high positive values. Also the 95% confidence intervals
are small. The coefficients of determination show reasonably good fit. All the above
results tend to validate the model and support all the four hypotheses.

4 Conclusions

Results obtained from path analysis of the survey data provide considerable empirical
evidence for the model. Results show strong dependence of User Satisfaction on Us-
ability and Functional Utility; Individual Impact on User Satisfaction and Organiza-
tional Impact on Individual Impact. All the four Hypotheses assumed in the beginning
of the research are found be true.

An implication of the model is that because of the causal nature of these dimen-
sions, Usability, Functional Utility and User Satisfaction are sufficient to measure the
effectiveness of computing facilities.

On the basis of the small piece of work done in this thesis, it is strongly recom-
mended that every academic institution should undergo through this self screening or
self assessment process. This model can be used by academic institutes to get regular
feedbacks about their computing facilities, which will help them in continuous im-
provements.

An attempt has been made to include all the suitable measures of each construct.
However, there is a scope of including new measures for each of the constructs. More
questions can be added to the questionnaire to measure each of these constructs, in-
cluding both positive and negative statements to check the consistency of the respon-
dents. Finally, inclusion of other constructs in the model can be investigated.

Table 4.

Path Unstandardized
Coeff.

Std.
Coeff

t (p-
value)

95%
Conf. Bounds from to

Coeff Std. Er. Lower Upper

H1 Usability User Satisfaction .228 .037 .211 6.126 (0) .155 .302

H2 Functional
Utility

User Satisfaction .737 .036 .696 20.234
(0)

.666 .809

H3 User Satisfaction Individual Impact .779 .028 .817 27.530
(0)

.723 .835

H4 Individual
Impact

Organizational
Impact

.798 .030 .812 27.011
(0)

.740 .856

References

1. Carlson, W.M., McNurlin, B.C.: Do you measure UP? Computerworld 26(49), 95–98
(1992b)

2. Delone, W.H., McLean, E.R.: Information systems success: the quest for dependent vari-
able. Information Systems Research 3, 60–95 (1992)

 Measuring Effectiveness of Computing Facilities in Academic Institutes 277

3. DeLone, H.W., McLean, R.E.: The DeLone and McLean model of information systems
success: A ten-year update. Journal of Management Information Systems 19(4), 9–30
(2003)

4. Saunders, C.S., Jones, J.W.: Measuring performance of the information systems function.
Journal of Management Information Systems 8(4), 63–82 (1992)

5. Seddon, P.B., Yip, S.K.: An empirical evaluation of user information satisfaction UIS,
measures for use with general ledger accounting software. Journal of Information Systems,
75–92 (1992)

6. Seddon, P.B., Kiew, M.-Y.: A partial test and development of Delone and Mclean’s model
of IS success. In: Fifteenth Annual International Conference of Information Systems (ICIS)
(1994)

7. Strassman, P.A.: The Business value of Computers: An executive Guide. Information Eco-
nomic Press, New Canaan, CI (1990)

8. Willcocks, L., Lester, S.: Beyond the IT Productivity Paradox. European Management Jour-
nal 14(3), 279–290 (1996)

9. Willcocks, L.: Investing in Information Systems: Evaluation and Management, 1st edn.
Chapman & Hall, Boca Raton (1996)

Appendix: Survey on Computing Facilities in Academic Institutes

This questionnaire uses a seven-point scale. The scale represents a spectrum. 1 signi-
fies that you strongly agree with the given statement, and 7 means you strongly dis-
agree. For each question tick the number that reflects what you think about each
statement. Computing facilities refer to computer hardware, software and network of
your institute.

PART A: Usability

1 Computing facilities are easy to use. 1 2 3 4 5 6 7

2 Computing facilities are user friendly. 1 2 3 4 5 6 7

3 It is easy to acquire skills for using the Computing facilities. 1 2 3 4 5 6 7

4 It requires lot of effort to use the Computing facilities 1 2 3 4 5 6 7

PART B: Functional Utility

1 Computing facilities meet most of your requirements. 1 2 3 4 5 6 7

2 The content of information obtained with the help of computing facilities meets your
requirements.

1 2 3 4 5 6 7

3 Computing facilities are available whenever required. 1 2 3 4 5 6 7

4 You can get in touch with sufficient sources of information by using computing
facilities.

1 2 3 4 5 6 7

5 Computing facilities enable you to obtain accurate information. 1 2 3 4 5 6 7

6 Computing facilities enable you to obtain up-to-date information. 1 2 3 4 5 6 7

278 S. Sharma and V. Bansal

PART C: User Satisfaction

1 Computing facilities meet your information processing and computational needs. 1 2 3 4 5 6 7

2 Computing facilities are fast enough. 1 2 3 4 5 6 7

3 Computational facilities are effective. 1 2 3 4 5 6 7

4 Overall,you are satisfied with the computing facilities. 1 2 3 4 5 6 7

PART D: Individual Impact

1 Computing facilities help you in learning. 1 2 3 4 5 6 7

2 Computing facilities help you in course work. 1 2 3 4 5 6 7

3 Computing facilities help you in research work. 1 2 3 4 5 6 7

4 Computing facilities help you in planning and decision making. 1 2 3 4 5 6 7

5 Computing facilities help you in communication with teachers and students. 1 2 3 4 5 6 7

6 Computing facilities help you in improving your overall productivity. 1 2 3 4 5 6 7

PART E: Organizational Impact

1 Computing facilities help in encouraging innovation. 1 2 3 4 5 6 7

2 Computing facilities help in improving research quality. 1 2 3 4 5 6 7

3 Computing facilities help in improving overall pass rate/grades. 1 2 3 4 5 6 7

4 Computing facilities help in better decision making. 1 2 3 4 5 6 7

5 Computing facilities help in improving the image of the institute. 1 2 3 4 5 6 7

6 Computing facilities help you in increasing capacity in terms of students. 1 2 3 4 5 6 7

7 Computing facilities help in improving overall productivity of the institute. 1 2 3 4 5 6 7

Combining Information Extraction and Data
Integration in the ESTEST System

Dean Williams and Alexandra Poulovassilis

School of Computer Science and Information Systems, Birkbeck College, University of London
Malet Street, London WC1E 7HX, U.K.

{dean,ap}@dcs.bbk.ac.uk

Abstract. We describe an approach which builds on techniques from Data Inte-
gration and Information Extraction in order to make better use of the unstructured
data found in application domains such as the Semantic Web which require the
integration of information from structured data sources, ontologies and text. We
describe the design and implementation of the ESTEST system which integrates
available structured and semi-structured data sources into a virtual global schema
which is used to partially configure an information extraction process. The infor-
mation extracted from the text is merged with this virtual global database and is
available for query processing over the entire integrated resource. As a result of
this semantic integration, new queries can now be answered which would not be
possible from the structured and semi-structured data alone. We give some exper-
imental results from the ESTEST system in use.

Keywords: Information Extraction, Data Integration, ESTEST.

1 Introduction

The Semantic Web requires us to be able to integrate information from a variety of
sources, including unstructured text from web pages, semi-structured XML data, struc-
tured databases, and metadata sources such as ontologies. Other applications exist which
also need to make used of heterogeneous data that is structured to varying degrees as
well as related free text. For example, in UK Road Traffic Accident reports data in a
standard structured format is combined with free text accounts in a formalised subset of
English; in crime investigation operational intelligence gathering, textual observations
are associated with structured data relating to people and places; and in Bioinfomat-
ics structured databases such as SWISS-PROT [1] include comment fields containing
related unstructured information.

Data integration systems provide a single virtual global schema over a collection
of heterogeneous data sources that facilitates global queries across the sources [2,3].
Such systems are able to integrate data occurring in a variety of structured and semi-
structured formats but, to our knowledge, they have not so far attempted to include
unstructured text. In Information Extraction (IE) systems, pre-defined entities are ex-
tracted from text and this data fills slots in a template using shallow NLP techniques
[4]. Data integration and IE are therefore complementary technologies and we argue

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 279–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 D. Williams and A. Poulovassilis

that a system that combines them can provide a basis for applications that need to inte-
grate information from text as well as structured and semi-structured data sources. Our
ESTEST system integrates the schemas of structured data sources with ontologies and
other available semi-structured data sources, creating a virtual global schema which is
then used as the template and a source of named entities for a subsequent IE phase
against the text sources. Metadata from the data sources can be used to assist the IE
process by semi-automatically creating the required input to the IE modules. The tem-
plates filled by the IE process will result in a new data source which can be integrated
with the virtual global schema. The resulting extended virtual global database can sub-
sequently used for answering global queries which could not have been answered from
the structured and semi-structured data alone.

The rest of this paper is structured as follows: Section 2 describes the architecture of
ESTEST and use of existing data integration and IE software. Section 3 give the design
and implementation of our ESTEST system, alongside an example that illustrates its
usage. Section 4 presents results from initial experiments in the Road Traffic Accident
application domain. Section 5 compares and contrasts our approach with related work.
Finally, in Section 6 we give our conclusions and plans for future work.

2 Background

The ESTEST Experimental Software to Extract Structure from Text system is imple-
mented as a layer over the AutoMed [5] data integration toolkit and the GATE [6] IE
framework, making use of their facilities. We now briefly describe GATE and AutoMed.

AutoMed. In data integration systems, several data sources, each with an associated
schema, are integrated to form a single virtual database with an associated global schema.
Data sources may conform to different data models and therefore need to be transformed
into a common data model as part of the integration process. AutoMed is able to sup-
port a variety of common data models by providing graph-based metamodel, the Hy-
pergraph Data Model (HDM). AutoMed provides facilities for specifying higher-level
modeling languages in terms of this HDM e.g. relational, entity-relational, XML. These
specifications are stored in AutoMed’s Model Definitions Repository (MDR). A generic
wrapper for each data model is provided, with specialisations for interacting with spe-
cific databases or repositories e.g. a set of relational wrappers for interacting with the
common relational DBMS. The schemas of such data sources can be extracted by the
appropriate wrapper and are stored in AutoMed’s Schemas & Transformations Repos-
itory (STR). AutoMed provides a set of primitive transformations that can be applied
to schemas e.g. to add, delete and rename schema constructs. AutoMed schemas are
therefore incrementally transformed and integrated by sequences of such transforma-
tions (termed pathways).

Add and delete transformations are accompanied by a query (expressed in a func-
tional query language, IQL [7]) which specifies the extent of the added or deleted con-
struct in terms of the rest of the constructs in the schema. These queries can be used
to translate queries or data along a transformation pathway [8]. In particular, queries
expressed in IQL can be posed on a virtual integrated schema, are reformulated by Au-
toMed’s Query Processor into relevant sub-queries for each data source, and are sent to

Combining Information Extraction and Data Integration in the ESTEST System 281

the data source wrappers for evaluation. The wrappers interact with the data sources for
the evaluation of these sub-queries, and with the Query Processor for post-processing
of sub-query results.

The queries supplied with primitive transformations also provide the necessary in-
formation for these transformations to be automatically reversible, e.g. an add trans-
formation is reversed by a delete transformation with the same arguments. AutoMed is
therefore defined as a both-as-view (BAV) data integration system in [8] which gives an
in-depth comparison of BAV with the other major data integration approaches, Global-
As-View (GAV) and Local-As-View (LAV) [2].

One of the main advantages of using AutoMed for ESTEST rather than a GAV or
LAV-based data integration system is that, unlike GAV and LAV systems, AutoMed
readily supports the evolution of both source and integrated schemas. This is because it
allows transformation pathways to be extended, so that if a new data source is added, or
if a data source or integrated schema evolves, then the entire integration process does
not have to be repeated and instead the schemas and transformation pathways can be
‘repaired’.

As a pre-requisite for the development of ESTEST we have made two extensions to
the AutoMed toolkit which were required for ESTEST but which are also more gener-
ally applicable. Firstly, we have extended AutoMed to include support for data models
used to represent ontologies. We have modeled RDF [9] graphs and associated RDFS
[10] schemas in the HDM. A corresponding AutoMed wrapper for such data sources
has been implemented using the JENA API [11]. Although only RDF/S data sources
are currently supported, the use of JENA means that additional ontology models can
easily be added as specialisations of the current wrapper, similarly to the specialised
AutoMed relational wrappers for specific RDMBS. Secondly, we have a developed the
AutoMed HDM Store, a native HDM repository that is used for storing the data that is
extracted by ESTEST from text sources.

GATE. The GATE system [6] provides a framework for building IE applications. It in-
cludes a wide range of standard components and also allows the integration of bespoke
components. Applications are assembled as pipelines of components which are used
to process collections of documents. Applications can be built and run either as stan-
dalone Java programs or through the GATE GUI. A pattern matching language called
JAPE [12] is provided for constructing application specific grammars. Some standard
JAPE grammars are provided with GATE e.g. for finding names of people in text. The
result of running an application is a collection of annotations over a text. For exam-
ple in the string “RAN IN FRONT OF BUS” an annotation might state that from the
seventeenth to nineteenth character there is a reference to a public service vehicle.

3 The ESTEST System

The ESTEST system supports an incremental approach to integrating text with struc-
tured and semi-structured data sources, whereby the user iterates through a series of
steps as new information sources need to be integrated and new query requirements
arise. The ESTEST approach is described in [13,14]. This paper describes an imple-
mentation of that approach, as well as giving some experimental results.

282 D. Williams and A. Poulovassilis

Integrate Data
Sources

Create Data to
assist the IE

process

IE
Configuration

Data

Information
Extraction (IE)

Integrate Results
of IE

Global
Schema

Extracted
Data

Query Global
Schema

Enhance Schema
Information

Control Flow
Data Flow

ESTEST
Metadata

Repository

Fig. 1. Overview of the ESTEST system

We use as our running example, a simple example application based on Road Traffic
Accident reports. In the UK, accidents are reported using a format known as STATS-20
[15]. In STATS-20, a record exists for each accident, following which there are one or
more records for the people and the vehicles involved in the accident. The majority of
the schema consists of coded entries, and detailed guidance as to what circumstances
each of the codes should be used accompanies these. A textual description of the acci-
dent is also reported, expressed in a stylised form of English. An example of the textual
description collected for a specific accident might be “FOX RAN INTO ROAD CAUS-
ING V1 TO SWERVE VIOLENTLY AND LEAVE ROAD”, where “V1” is short for
“vehicle 1” and is understood to be the vehicle which caused the accident. The schema
of the structured part of the STATS-20 data is well designed and there have been a num-
ber of revisions during its several decades of use. However, there are still queries that
cannot be answered via this schema alone.

In our running example we suppose that an analysis of the road traffic accidents
caused by animals is required, including the kind of animal causing the obstruction.

Figure 1 illustrates the main components of the ESTEST system and each of these is
described in turn in sections 3.1 to 3.5 below.

3.1 Integrate Data Sources

The ESTEST Integrator component is configured with the collection of data sources
available to the user. Each of these has an associated ESTEST Wrapper instance (there
is an ESTEST Wrapper for each data model supported by AutoMed). The ESTEST
Wrapper makes use of the corresponding AutoMed wrapper in order to construct a data
source schema within the AutoMed STR. However, the ESTEST Wrapper is also able to
extract additional metadata from the data source, which is stored in the ESTEST Meta-
data Repository — see Figure 1. The ESTEST wrapper also transforms the AutoMed
representation of a data source schema into the ESTEST data model described below.

The first step for the Integrator is to iterate through the data sources and use the
associated wrapper to construct an initial schema within the AutoMed STR.

Combining Information Extraction and Data Integration in the ESTEST System 283

In our example, two data sources are assumed to be available: AccDB is a relational
database holding the relevant STATS-20 data and AccOnt is a user-developed RDF/S
ontology concerning the type of obstructions which cause accidents. Figure 3 shows the
AccOnt RDFS schema and some associated RDF triples. The AccDB database consists
of three tables:

accident(acc_ref,road,road_type,hazard_id, acc_desc)
vehicle(acc_ref,veh_no,veh_type)
carriageway_hazards(hazard_id,hazard_desc)

In the accident table, each accident is uniquely identified by an acc ref, the road
attribute identifies the road the accident occurred on, and road type indicates the type
of road. The hazard id contains the carriageway hazards code and this is a foreign
key to the carriageway hazards table. We assume that the multiple lines of the text
description of the accident have been concatenated into the acc desc column. There
may be zero, one or more vehicles associated with an accident and information about
each them is held in a row of the vehicle table. Here veh reg uniquely identifies each
vehicle involved in an accident and thus acc ref,veh no is the key of this table. The
Integrator calls on the wrappers to create a relational schema for AccDB and RDF/S
schema for AccOnt.

The data sources are each now converted from their model specific representation
into the ESTEST data model. The table below shows the constructs of the ESTEST data
model and their representation in the HDM. We see that the ESTEST model provides
concepts which are used to represent anything that has an extent i.e. instance data. Con-
cepts are represented by HDM nodes e.g. 〈〈fox〉〉, 〈〈animal〉〉, and are structured into an
isA hierarchy e.g. 〈〈isA, fox, animal〉〉. Concepts can have attributes which are repre-
sented by a node and an unnamed edge in the HDM e.g. the attribute 〈〈animal, num-
ber of legs〉〉. We note that in AutoMed’s IQL query language instances of modeling
constructs within a schema are uniquely identified by their scheme, enclosed within
double chevrons, 〈〈 ... 〉〉.

ESTEST Data Model

Construct HDM Representation
Concept:〈〈c〉〉 Node: 〈〈c〉〉
Attribute:〈〈c,a〉〉 Node: 〈〈a〉〉

Edge: 〈〈 ,c,a〉〉
isA: 〈〈isA,c1,c2〉〉 Constraint 〈〈c1〉〉 ⊆ 〈〈c2〉〉

The two data source schemas in our example are automatically converted into their
equivalent ESTEST representation when their ESTEST wrapper is called by the In-
tegrator. The representation of AccDB is shown in Figure 2 and that of AccOnt in
Figure 3.

Similarly, the Integrator now calls each ESTEST wrapper to collect metadata from its
data source. This metadata is used to assist in finding correspondences and for suggest-
ing to the user which schema constucts could be of use in the later IE step (see section
3.3 below). As well as type information, Word Forms and Abbreviations are collected
as described below. This metadata is stored in the ESTEST Metadata Repository.

284 D. Williams and A. Poulovassilis

vehicle
acc_ref

veh_no

attribute

veh_reg

veh_type

attribute

attribute

attribute

accident
road_type attribute

road

year

attribute

attribute

attribute

attribute

carriageway
hazards

hazard_id

hazard_desc

attribute

attribute

acc_desc

attribute

Fig. 2. The AccDB schema represented in the ESTEST model

resource

obstruction

inanimate

spillage
tree

animal

subClass

subClass
subClass

subClass
subClass

fox

cat

bricks

about

about

about

RDFS Ontology
Schema

RDF Triples

accident subClass

cause

domain

range

propertyclassKey
:

resource

obstruction

inanimate

spillagetree

animal

isA isA

isA isA

foxcatbricks

isAisA

isA

RDFS Ontology ESTEST Model
Representation

accident

attributeisA

Fig. 3. AccOnt Ontology and its representation in the ESTEST model

Word Forms are words or phrases which represent a concept. Word forms associated
with concepts are important in ESTEST because of their use in the IE process. The am-
biguity inherent in natural language means that word forms can be associated with many
concepts. The, often limited, textual clues available in the data source schemas are used
by ESTEST to find word forms. These clues include schema object identifiers and com-
ment features such as the ‘remarks’ supported by the JDBC database API. In database
schemas, a number of informal naming conventions are often seen, for example nam-
ing database columns “acc identifier” or “accIdentifier”. The Integrator recognises a
number of these conventions and breaks identifiers returned by the wrappers into their
component parts.

Abbreviations are often used in database schema object identification, and the In-
tegrator has an extendable set of heuristics for parsing common naming conventions
e.g. a rule exists for identifying when an abbreviation of the table name is prefixed
onto the column names in a relational table e.g. the abbreviation “acc” in the column
“acc ref” of the “accident” table used in the example. The user can also enter abbrevia-
tions commonly used in the application domain. Abbreviations are combined with full
word forms to generate possible combinations.

There are a number of alternative sources for expanding the word forms for a concept
when required: manually entered, from database description metadata, from lower down

Combining Information Extraction and Data Integration in the ESTEST System 285

the concept isA hierarchy, or from the WordNet [16] natural language ontology. The
Integrator is able to use these to expand the number of word forms for a concept as
required. A confidence measure is assigned to the word form depending on its source.

Type metadata is also extracted from the data sources and is used to suggest which
schema constructs might be text to be processed by the IE component or used as sources
of named entities. Named entity recognition is one of the core tasks in information
recognition and involves looking up flat-file lists containing the known instances of
some type. ESTEST extends this by identifying concepts in the database schema that are
likely to be sources of named entity types and uses either their extent or the word forms
associated with the concept for the ESTEST named entity recognition component.

In our running example, abbreviations are suggested e.g. “acc” for “accident”, “veh”
for “vehicle”. The Integrator generates alternative word forms for the schema names
and presents them to the user e.g. for the schema construct 〈〈accident, acc ref〉〉 the
associated word forms are “accident reference”, “accident” and “reference”. The user
is now asked if they wish to expand the current word forms of each concept. Suppose
that for now only the concept 〈〈animal〉〉 is selected to be expanded and solely from the
schema. In this case the word forms “cat” and “fox” are added to 〈〈animal〉〉 from the
isA hierarchy.

In order to complete the integration and develop the global schema, the Integrator
next attempts to find correspondences between concepts in different source schemas
using the gathered metadata. The user can accept or amend the list of suggested equiv-
alent schema objects. The corresponding schema constucts are now renamed to have
the same name. Using the facilities provided by AutoMed, each of the ESTEST model
schemas is incrementally transformed until they each contain all the schema constucts
of all the source schemas — these are the union schemas shown in Figure 5. An ar-
bitrary one of these schemas is designated finally as the global schema. In our simple
example just “accident” from the domain ontology and “accident” from the schema is
suggested as a correspondence by the Integrator and is accepted by the user. No ad-
ditional manual correspondences are supplied and the initial global schema shown in
Figure 4 is created. Finally, as the later IE process will require a repository to store the
extracted information, an additional data source is created for this purpose by the Inte-
grator. The schema of this new data source is the HDM representation of the ESTEST
global schema just derived. This new data source is integrated into the global schema
in the same way as the other data sources.

For our example, the resulting network of transformed and integrated schemas is
shown in Figure 5 — for each data source there is now an AutoMed schema and corre-
spondences between schema constructs in the data sources have been identified. There
is a pathway to an equivalent ESTEST model schema and then on to a union schema.
Any one of these union schema can be used as the global schema for the entire network.

3.2 Create Metadata to Assist the IE Process

The ESTEST Configuration component now makes use of the global schema and col-
lected metadata to suggest basic information extraction rules, such as macros for named
entity recognition, and to create templates to be filled from concepts in the schema
which have attributes of unknown value. In IE systems, templates are filled by

286 D. Williams and A. Poulovassilis

vehicle
acc_ref

veh_no

attribute

veh_reg

veh_type

attribute

attribute

attribute

road_type
attribute

road

year

attribute
attribute

attribute attribute
carriageway

hazardshazard_id

hazard_desc

attribute
attribute

acc_desc

attribute

resource

obstruction

inanimate

spillage

tree

animal

isA

fox
cat

bricks

isAisA

isAisA
isA

isA

accident

isA

attribute

Fig. 4. Initial ESTEST global schema

AccDB
Data Source
(Relational)

AccOnt
Data Source

(RDF &RDFS)

HDM Store
Acc

(HDM)

Relational
Wrapper

Ontology
Wrapper

HDM
Wrapper

Relational
Schema

Ontology
Schema

HDM
Schema

ESTEST Model
Relational Schema

ESTEST Model
Ontology
 Schema

ESTEST Model
HDM Schema

Union
Schema

Union
Schema

Union
Schema

Global
Schema

id

id

correspondences

Fig. 5. AutoMed Schema Network for the Road Traffic Accident Example

annotations over text (the template slots). ESTEST extends this notion of templates
in a number of ways. Firstly, some slots in a template are pre-filled from the structured
part of the source data and these values are used to attempt to disambiguate when mul-
tiple annotations are suggested over the same text. Secondly, ESTEST makes use of
type information contained in the metadata to validate suggested annotations. Finally,
ESTEST extends the idea of the relationship that exists between annotations. Normally
this only goes as far as linking slots to templates. There is Annotation Schema idea in
GATE but this is restricted to defining the annotation features which are allowed and is
used to drive the manual entry of annotations. In our system, we link annotation types
to concepts in the global schema. In this way the structural relationships between anno-
tation types can be used and extracted annotations can be linked to related instances of
other concepts in the source data.

The user confirms or amends the automatically produced configuration. In our ex-
ample, the user selects just 〈〈animal〉〉 from the list of suggested named entity sources.
the Configuration component identifies the 〈〈accident〉〉 concept as a template. As the
〈〈obstruction〉〉 concept has no extent, the IE step will attempt to find values for this. A
macro for 〈〈animal〉〉 is created:

Combining Information Extraction and Data Integration in the ESTEST System 287

Macro: ANIMAL
({Lookup.minorType == animal })

and a stub JAPE rule for 〈〈obstruction〉〉. The user enhances this stub as follows:

Rule: OBSTRUCTION1 (({Token.string == "RUNS"} |
{Token.string == "WALKS"}|
{Token.string == "JUMPS"})
(SPACE)?
({Token.string == "INTO"} |
{Token.string == "ONTO"} |
{Token.string == "IN FRONT OF"})
(ANIMAL)) :obstruction -->

:obstruction.obstruction =
{kind = "Obstruction",

rule = "OBSTRUCTION1"}

3.3 Information Extraction Component

Now the GATE-based ESTEST IE component is run. The following standard com-
ponents GATE are configured and assembled into a pipeline: Document Reset which
ensures the document is reset to its original state for reruns; the English Tokeniser splits
text into tokens such as strings and punctuation; Sentence Splitter divides text into sen-
tences; the JAPE Processor takes the grammar rules developed above and applies them
to the text. Also used is our bespoke Schema Gazetteer component which extends the
gazetteers used in the Named Entity recognition core IE task. The annotation type is
linked to a concept in the global schema and instances are found either by presenting a
query to the global schema for the extent concept across the data sources, or the word
forms previously associated with the concept are obtained.

To illustrate, suppose in our example the AccDB database contains just three acci-
dents with the following descriptions:

AccDB Accident Descriptions

Acc Ref Description
A001234 FOX RUNS INTO ROAD CAUSING V1

TO SWERVE VIOLENTLY
AND LEAVE ROAD OFFSIDE

A005678 UPPERTON ROAD LEICESTER
JUNCTION SYKEFIELD AVENUE
V1 TRAV SYKEFIELD AVE FAILS
TO STOP AT XRDS AND
HITS V2 TRAV UPPERTON RD V2
THEN HITS V3 PKD ON OS
OF UPPERTON RD

A009012 ESCAPED KANGAROO JUMPS IN
FRONT OF V1

288 D. Williams and A. Poulovassilis

When the IE component has run the following annotations are found:

Annotations

Annotation Start End Literal
ANIMAL 1 3 FOX
OBSTRUCTION 1 13 FOX RUNS

INTO ROAD

3.4 Integrate Results of IE

The data extracted from the text is now stored in the HDM repository. In our example an
instance id is generated “#1” and new instances of HDM nodes 〈〈fox〉〉, 〈〈animal〉〉 and
〈〈obstruction〉〉, are added with value [#1]. Edges 〈〈isA,fox,animal〉〉 and 〈〈isA,animal,
obstruction〉〉have the value of the pair{#1,#1}.Edge〈〈attribute,accident,obstruction〉〉
has value {A001234,#1}. Queries on the global schema now include the new fact that a
fox caused accident A001234.

3.5 Remaining ESTEST Phases

The user can now pose queries to the global schema the results of which will include
the new data extracted from the text. The global schema may subsequently be extended
by new data sources being added, or new schema constucts identified and added to
it. The user may also choose to expand the number of word forms associated with
schema concepts. Following any such changes, the process is then repeated and new
data extracted from the text.

In our example, suppose the user suspects that the results may not be complete and
expands the word forms from WordNet for 〈〈animal〉〉. The Integrator suggests a map-
ping between this schema object and a WordNet synset (a set of word forms with the
same meaning) which the user confirms. Word forms are then obtained by descending
the WordNet hypernym relations. The list obtained includes “kangaroo” and as a re-
sult re-running the Configuration and IE components now produces similar additional
annotations for the third accident report, and an additional fact in the HDM store of
KANGAROO as an obstruction for accident A009012.

4 Experiments with Road Traffic Accident Data

There are a number of variables which affect the performance of the ESTEST system
including: the availability of structured data sources relating to the text, the degree of
similarity between the text instances, the amount of effort spent by the user configur-
ing the system to the specific application domain, and the domain expertise of the user.
In order to provide some initial confirmation of the potential of our approach we have
experimented with a data set of Road Traffic Accident reports consisting of 1658 acci-
dent reports. These were six-months worth of reports from one of Britain’s 50 police
forces. We identified five queries of varying complexity which cannot be answered by
the STATS-20 structured data alone. These queries are shown in the table below.

Combining Information Extraction and Data Integration in the ESTEST System 289

RTA Queries

Q1 Which accidents involved red traffic lights?
Q2 How many accidents took place 30-50m

of a junction?
Q3 How many accidents involve

drunk pedestrians?
Q4 Which accidents were caused by animals?
Q5 How many resulted in a collision

with a lamppost?

The ESTEST system was configured using a randomly chosen set of 300 reports.
We then ran the system over the remaining 1358 unseen reports and compared the

results to a subsequent manual examination of each report. The table below shows these
results in terms of the actual number of relevant reports, the recall (the number of cor-
rectly identified reports as a percentage of all the correct reports) and the precision (the
number of correctly identified reports as a percentage of all the identified reports).

Results of RTA Query Experiments

Query Relevant Recall Precision
Reports

Q1 25 84% 95%
Q2 89 99% 99%
Q3 9 78% 100%
Q4 14 86% 86%
Q5 15 88% 93%

Where appropriate the queries combined structured and text results, for example
STATS-20 structured data includes a flag used to indicate whether the accident took
place within 20 meters of a junction but does not reveal the distance otherwise. In the
query ”How many accidents took place 30-50m of a junction?” accidents with the 20
meters flag set were discarded and only the remaining reports with relevant IE results
considered. Configuring the system took 5 hours to develop a domain ontology and
enhancing the generated stub rules for the IE process. These results are promising even
with the short time spent configuring the system by a non-domain expert user.

5 Related Work

An alternative to rule-based IE is text mining, in which some NLP process creates a
structured data set from the text and then this is mined in order to discover patterns
in the structured data [17]. Our ESTEST system, in contrast, is driven by specific new
querying requirements and the potential of making use of new data sources. None the
less, a text mining extension might be a useful addition to ESTEST for some applica-
tion domains e.g. the SWISS-PROT database, while [18] has shown the potential for
combining IE and Text Mining in general.

Recent developments in IE have included moves to support the challenges of knowl-
edge management [19] and applications for the semantic web e.g. support for ontologies
has recently been added to GATE [20]. A common starting point for recent research is

290 D. Williams and A. Poulovassilis

the limitations of the traditional core Named Entity Recognition task in IE where an-
notations are assigned a type from a list of types names, and recent work is moving
towards the idea of Semantic Annotation [21] where the annotation is linked to a con-
cept in an ontology. This is similar to the ESTEST approach of linking annotations to a
concept in a virtual global schema.

The developers of the Knowledge and Information Management (KIM) platform [22]
believe that a lightweight ontology that provides structure but few axioms is sufficient
for the IE task. Our ESTEST data model can similarly be thought of as a lightweight
ontology providing a taxonomy and the facility for concepts to have attributes. KIM
is based on an ontology of ‘everything’ (KIMO) pre-defined to include concepts and
entities from the common IE tasks; annotations that are found by the IE system are
treated separately from the knowledge in the ontology. In contrast, ESTEST develops
the global schema from available structured data sources specific to the application, and
seeks to expand the instance data and schema incrementally by adding to the previously
known data and schema. Also, ESTEST makes use of already known instances of struc-
tured data which relate to the specific text being processed in order to assist in finding
slot values, and it uses other schema constucts and word forms obtained from metadata
as sources for named entities.

Finally, previous work on making use of the text in UK Road Traffic Accident reports
used expert knowledge of the sub-language in the reports to code description logic-
based grammar rules [23]. ESTEST makes use of the structured data as well as the text
to answer queries and the approach is more generally applicable to other application
domains as it does not depend on a specific restricted sub-language.

6 Conclusions and Future Work

We have described the ESTEST system, which combines techniques from Data Integra-
tion and Information Extraction in order to make integrated use of heterogeneous data
that is structured to varying degrees as well as related free text. ESTEST does this by
extracting metadata from data sources to support their integration into a virtual global
schema expressed in the ESTEST data model. This schema and its associated metadata
are used to semi-automatically configure an IE process. The newly extracted informa-
tion from the text is merged into the virtual global database which can then be used
to answer new queries that could not have been answered before. The user can extend
the global schema, add new data sources, enhance the IE configuration, and rerun as
required.

This approach is novel in a number of ways. First, to our knowledge this is the first
time that a Data Integration system has been extended to include support for free text.
Second, ESTEST uses schema integration techniques to integrate available structured
data into a global schema which is used as a light-weight ontology for semantic anno-
tation — this is a realistic application-specific alternative to building ontologies from
scratch. Third, ESTEST uses the global schema to semi-automatically configure the IE
process, thereby reducing the configuration overhead of the IE process.

We have given a simple example illustrating the operation of ESTEST on Road
Traffic Accident reports. Initial experimental results in the same domain indicate the

Combining Information Extraction and Data Integration in the ESTEST System 291

approach is able to increase the utility of text stored alongside structured data and that
the system’s performance is at least comparable with standalone IE systems.

Based on this preliminary evaluation we have identified three areas for further en-
hancement of ESTEST: developing its schema matching component by using IE on
the textual schema metadata; exploring identifier disambiguation techniques to assist
with the co-referencing task in IE; and improving the support for enhancing the global
schema with new structure found in the text.

To investigate how generally applicable our approach is, we will then evaluate the
enhanced ESTEST system in the crime investigation and semantic web application do-
mains. In this evaluation, we will consider the results obtained by ESTEST users who
are experts in the given application domain. These results will be compared to both any
existing approaches (such as manual inspection or keyword search) employed by these
expert users and to results obtained by them using a stand-alone IE system.

Finally, in order to support the end user, we will analyse the requirements of a work-
bench for accessing the ESTEST components and functionality via a graphical user
interface.

References

1. Bairoch, A., Boeckmann, B., Ferro, S., Gasteiger, E.: Swiss-Prot: Juggling between evolution
and stability. Brief. Bioinform. 5, 39–55 (2000)

2. Lenzerini, M.: Data Integration: A Theorectical Perspective. In: Proc. PODS 2002, pp. 247–
258 (2002)

3. Halevy, A.Y.: Data Integration: A Status Report. In: Weikum, G., Schöning, H., Rahm, E.
(eds.) BTW, GI. LNI, vol. 26, pp. 24–29 (2003)

4. Appelt, D.: An introduction to Information Extraction. Artificial Intelligence Communica-
tions 12, 161–172 (1999)

5. AutoMed Project (2006), http://www.doc.ic.ac.uk/automed/
6. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and graph-

ical development environment for robust NLP tools and applications. In: Proc. of the 40th
Anniversary Meeting of the Association for Computational Linguistics (2002)

7. Poulovassilis, A.: A tutorial on the IQL query language. Technical report, AutoMed Project
(2004)

8. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation
rules. In: Proc. ICDE 2003, pp. 227–238 (2003)

9. Lassila, O., Swick, R.: Resource description framework (RDF) model and syntax specifica-
tion. W3C Recommendation (1999), http://www.w3.org/TR/REC-rdf-syntax/

10. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF schema. W3C Rec-
ommendation (2004), http://www.w3.org/TR/rdf-schema/

11. McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing 6, 55–59 (2002)
12. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns Engine. In:

Research memorandum, 2nd edn. University of Sheffield (2000)
13. Williams, D., Poulovassilis, A.: An example of the ESTEST approach to combining unstruc-

tured text and structured data. In: Proc. of the Database and Expert Systems Applications
(DEXA 2004), pp. 191–195, IEEE Computer Society, Los Alamitos (2004)

14. Williams, D.: Combining data integration and information extraction techniques. In: Proc.
Workshop on Data Mining and Knowledge Discovery, at BNCOD 2005, pp. 96–101 (2005)

http://www.doc.ic.ac.uk/automed/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/

292 D. Williams and A. Poulovassilis

15. UK Department for Transport: Stats20: Instructions for the completion of road accident re-
port form (1999), http://www.dft.gov.uk

16. Fellbaum, C. (ed.): WordNet An Electronic Lexical Database. MIT Press, Cambridge (1998)
17. Tan, A.H.: Text mining: The state of the art and the challanges. In: Proc. of the PAKDD 1999

Workshop on Knowledge Discovery from Advanced Databases, pp. 65–70 (1999)
18. Nahm, U.Y., R.M.: Using Information Extraction to aid the discovery of prediction rules

from text. In: Proc. of the KDD-2000 Workshop on text Mining, pp. 51–58 (2000)
19. Cunningham, H., Bontcheva, K., Li, Y.: Knowledge Management and Human Language:

Crossing the Chasm. Journal of Knowledge Management 9, 108–131 (2005)
20. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to Meet New

Challenges in Language Engineering. Natural Language Engineering 10, 349–373 (2004)
21. Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.: Semantic

Annotation, Indexing, and Retrieval. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 484–499. Springer, Heidelberg (2003)

22. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM - a semantic platform
for information extraction and retrieval. Nat. Lang. Eng. 10, 375–392 (2004)

23. Wu, J., Heydecker, B.: Natural language understanding in road accident data analysis. Ad-
vances in Engineering Software 29, 599–610 (1998)

http://www.dft.gov.uk

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 293–306, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Introducing a Change-Resistant Framework for the
Development and Deployment of Evolving Applications

Georgios Voulalas and Georgios Evangelidis

Department of Applied Informatics, University of Macedonia
156 Egnatia St., Thessaloniki, Greece

voulalas@uom.gr, gevan@uom.gr

Abstract. Software development is an R&D intensive activity, dominated by hu-
man creativity and diseconomies of scale. Current efforts focus on design patterns,
reusable components and forward-engineering mechanisms as the right next stage
in cutting the Gordian knot of software. Model-driven development improves pro-
ductivity by introducing formal models that can be understood by computers.
Through these models the problems of portability, interoperability, maintenance,
and documentation are also successfully addressed. However, the problem of
evolving requirements, which is more prevalent within the context of business ap-
plications, additionally calls for efficient mechanisms that ensure consistency be-
tween models and code, and enable seamless and rapid accommodation of changes,
without interrupting severely the operation of the deployed application. This paper
introduces a framework that supports rapid development and deployment of evolv-
ing web-based applications, based on an integrated database schema. The proposed
framework can be seen as an extension of the Model Driven Architecture targeting
a specific family of applications.

Keywords: Model-driven Development, Meta-Models, Evolving Business Ap-
plications, Application Generators, Application Deployment Platforms, Reflec-
tional Programming.

1 Introduction

Information systems are one of the most effective ways for the enterprises to deal
with challenges of today's dynamic, competitive environment. The enterprise may be
a commercial business, a government agency or an academic institution. A vast ma-
jority of these information systems are long-lived, multi-step applications that support
mission-critical business processes spanning multiple enterprise applications, corpo-
rate departments, and business partners.

Why have these process-driven applications become so prevalent? There are cer-
tainly many reasons but the most apparent ones are [12]:

 Today's economic challenges have forced enterprises to look for new efficiencies

by automating processes untouched by their existing enterprise systems. Packaged
enterprise applications such as ERP systems manage only typical processes such
as material resource planning and financial reporting.

294 G. Voulalas and G. Evangelidis

 The rigidity of packaged applications (ERP, CRM, etc.) nullifies what many firms
regard as their competitive advantage, i.e., their unique business processes.

 Processes are embedded in ERP and other monolithic systems. Embedding proc-
esses in software is a bad idea, since they cannot be easily changed, combined
with others, or integrated for collaboration.

 Business processes extending behind the firewall and over the Internet have cre-
ated new opportunities for companies to achieve channel efficiencies by creating
new business processes and extending existing ones to customers, trading partners
and suppliers.

 The emergence of the Application Service Provision model in the late '90s has
created new prospects in setting enterprise collaboration infrastructures (e.g., e-
marketplaces). New business models have arisen, like the e-Business Service Pro-
vision model, which introduces an intermediate player that delivers business
development services through dynamically adaptive software solutions for inter-
organizational process automation & improvement.

The response to these challenges is similar: companies are looking for technology
solutions to improve enterprise processes, leverage existing infrastructure and create
new ways to compete. The fact that they can obtain powerful computational resources
and reliable, high-performance network infrastructures at low cost enables them to
focus solely on the development of efficient and sophisticated software solutions.

Still, software development is an area in which we are struggling with a number of
major problems. The most important problems are [7]:

The Productivity, Documentation, and Maintenance Problem. The software devel-
opment process includes a number of phases: (a) Conceptualization and requirements
elicitation and gathering, (b) Analysis and functional description, (c) Architectural speci-
fication and design, (d) Implementation, (e) Testing, and, (f) Deployment. Whether we
use an incremental and iterative process, or the traditional waterfall process, documents
and diagrams are produced during the first three phases. The connection between those
artefacts and the code fades away as implementation progresses. Changes widen the gap,
since they are usually done at the code level only, due to time restrictions. The idea of
Extreme Programming (XP) has rapidly become popular, since it is built upon the fact
that the code is the driving force of software development and thus the phases that should
accumulate the major effort are coding and testing. However, having just code and tests
makes maintenance of a software system very difficult. Practically speaking, analysis and
design artefacts are required, but to be really productive they should not be just static,
paper representations. They have to stay in high cohesion with the code throughout the
software lifecycle, they should elevate technologists above the lower level complexities
that are imposed by the available (with continuously increased complexity) technologies,
and they need to be eligible as input in forward-engineering operations.

The Portability Problem. The software industry has a special characteristic that makes
it stand apart from most other industries. Each year, and sometimes even faster, new
technologies are being invented and becoming popular (e.g., Java, CORBA, UML,
XML, J2EE, .NET, and Web Services). The new technologies offer concrete benefits for
companies and many of them cannot afford to lag behind. As a consequence, the invest-
ments in previous technologies lose value, and existing systems have to be ported to the

 A New Framework for Evolving Applications 295

new technology in order for interoperability (with systems built with the new technology)
restrictions to be completely wiped out.

The Interoperability Problem. Software systems rarely live isolated. Most systems
need to communicate with other, often legacy, systems.

The Evolution Problem. The management of evolution in information systems is a
dominant requirement. This is even stronger in business applications, due to the dy-
namic nature of business domains. In [11] the following factors that drive information
system evolution are listed:

“A change in the universe of discourse”: The application world is continually evolv-
ing. A viable application system should accommodate these changes.

“A change to the interpretation of facts about the universe of discourse and the man-
ner in which the task is realized in a system”: People are not able to precisely ex-
press the desired functionality of a large-scale application system. Only experi-
ence from using the system will enable them to properly formulate the needs and
requirements.

“Changes in the form of updates to effect upgrades to the functionality or scope of a
system”: People do not know in advance all the desired functionality of a large-
scale application system. Only experience from using the system will enable them
to realize and express all needs and requirements.

“Changes in the form of updates to effect efficiency improvements”. For example, the
restructuring of database elements in order for faster information retrieval to be
achieved.

In order for evolution to be handled efficiently the following objectives should be
met:

 changes should be seamlessly incorporated without the need of restructuring the
existing application,

 analysis and design artefacts should be updated in order for changes to be re-
flected,

 the operation of the deployed application should not be interrupted, or at least in-
terruption should minimized, and

 access to old business objects within their right context should be supported, i.e.,
at any time an old business object should be able to be easily retrieved and exam-
ined through the specific version of the application that produced and manipulated
it, in order for user to be able to trace back to former business data.

This paper introduces a new framework for the development and deployment of
web-based business applications. In Section 2 we introduce a composition framework
that singles out four essential constituents for every business application. In Section 3,
we present the Model Driven Architecture (MDA) and the modern practices brought
out by Microsoft. In Section 4, we discuss the areas of the MDA that will take advan-
tage of the proposed framework. In section 5, the framework is introduced. The last
section provides a conclusive summary of the paper and identifies our future research
plan.

296 G. Voulalas and G. Evangelidis

2 Defining the Puzzle

The four coordinates that drive software production and evolution within an enter-
prise, a business network or even a marketplace are the following:

 Flow of Events (Workflow): Every business application incorporates a workflow
model that indicates the flow of activities & information, how involved roles in-
teract and the conditions mastering the flow. When applications are developed
with generic development platforms (e.g. J2EE, .NET etc), there are several soft-
ware engineering techniques to capture & design such flows (e.g. activity dia-
grams), but during implementation the workflow model gets embedded in the
code.

 Object Processing: Every process incorporates business objects that are created,
routed, processed and archived within its activities. These objects transfer, among
the involved actors, the information that is necessary for the execution of the proc-
ess. With generic development platforms, there is enough flexibility to implement
components managing any structured information.

 Enterprise Modelling: Besides workflows and data processing logic, every busi-
ness application incorporates mechanisms for Enterprise Modelling, organiza-
tional relationships establishment and role assignment services. It should be noted
that Enterprise Modelling often indicates the optimum manner that applications
should be utilized within an organization. In typical applications developed with
generic development platforms, Enterprise Modelling is limited to user admini-
stration, authentication & authorization services, but the development environment
itself provides the opportunity to develop models as complex as one wishes.

 Integration: Integration with third-party information systems, either workflow or
ERP systems, custom applications or embedded systems (e.g. applications embed-
ded in manufacturing equipment), is also essential for process automation. Here, a
combination of XML standards, WEB Services and object-oriented techniques for
mastering the complexity of integration requirements is very essential. Unfortu-
nately, the majority of application development environments consider system in-
tegration as simple data import & export, and usually such implementations allow
for limited interoperability.

Those four coordinates will help us to define the core model of our proposed
framework in Section 5.

3 MDA and Microsoft Software Factories

MDA [7], [8], [9] is a framework for software development defined by the OMG. The
MDA development lifecycle is not very different from the traditional lifecycle; they
both involve the same phases. One of the major differences has to do with the nature
of the artefacts that are produced during the development process. The artefacts are
models that can be understood and processed by computers. The following three
models are at the heart of the MDA.

 A New Framework for Evolving Applications 297

Platform Independent Model (PIM). This model is the first to be defined and is a
model with a high level of abstraction that is independent of any implementation
technology. Within a PIM, the system is modelled from the aspect of how it best sup-
ports the business requirements.

Platform Specific Model (PSM). In the next step, the PIM is transformed into one or
more PSMs. A PSM specifies the system (or part of the system) in terms of the im-
plementation details defined by one specific implementation technology.

Code. The final step in the development is the transformation of each PSM to code.
Because a PSM fits its technology rather closely, this transformation is relatively
straightforward.

For many specifications, PIM and PSMs are defined in UML, making OMG's
standard modelling language a foundation of the MDA.

In contrast to traditional development, MDA transformations are always executed
by tools. Many tools are able to transform a PSM into code; there is nothing new to
that. What’s innovative in MDA is that the transformation from PIM to PSM is auto-
mated as well (Fig. 1).

Fig. 1. Models, transformations & bridges in the MDA development process

Let us now clarify how MDA responds to the challenges presented in the previous
section.

Productivity, Documentation and Maintenance. In MDA the focus for a developer
shifts to the development of a PIM. The PSMs that are needed are produced automati-
cally, and code is in turn generated automatically from the PSMs. Developers can
shift focus from code to PIM, thus paying more attention to eliciting requirements and
resolving the business problems. This results in systems that fit much better with the
needs of the end users, and are developed in less time. The PIM fulfils the function of
high-level documentation that is needed for any software system. The PIM is not fro-
zen after writing, since changes made to the system will eventually be made by
changing the PIM and regenerating the PSMs and the code. In the MDA approach the
documentation at a high level of abstraction will naturally be available; this makes
maintenance easier.

Portability. Portability is achieved by focusing on the development of PIMs that are
by definition platform independent.

298 G. Voulalas and G. Evangelidis

Interoperability. When PSMs are targeted at different platforms, they cannot directly
talk to each other. Concepts from one platform should be transformed into concepts
used in another platform. MDA addresses this problem by generating not only the
PSMs, but the necessary bridges between them as well.

Evolution Management. The PIM is a live artefact that depicts precisely the system
throughout its lifecycle, since all changes made to the system are eventually made by
changing the PIM and regenerating the PSMs and the code.

On the other side, Microsoft has recently introduced Domain Specific Languages
(DSLs) with its own modelling environment, Visual Studio 2005 Team System
(VSTS). DSLs [4] are programming languages dedicated to specific problems and
consisting of their own built-in abstractions and notations. DSLs underpin Microsoft's
concept of software factories, that are planned modules of tools, content and proc-
esses used to build applications in specific domains like healthcare, human resources
or enterprise resource planning. Microsoft has chosen the term “software factory” in
order to emphasize upon reusable assets and tooling for supporting them. The soft-
ware industry welcomed the new approach, however many are still cautious, mainly
due to the displacement of the UML and the fact that since software is an R&D and
not a production activity, it is difficult to apply manufacturing principles. Undoubt-
edly, narrowing the domain enables to more precisely define the features of the target
family and facilitates the definition of languages, patterns, frameworks and tools that
automate the development of its members. One early backer for the DSL and Soft-
ware Factories approach is Borland.

4 Rethinking MDA

MDA is a complete framework that enables organizations to respond efficiently to the
augmentative requirements of modern software projects.

The current status of the framework is mainly shaped by the availability of support
tools and therefore presents the following deficiencies [7]:

 Though OMG has defined the mapping standards between the three models (the
PIM, the PSM and the code), it has yet to define how to implement the models.
This task has been left to the software development tool vendors currently sup-
porting the MDA initiative. Although many of these vendors have implemented
parts of the MDA, few have done so in its entirety. In order for users to fully bene-
fit from MDA, vendors need to implement all of MDA, i.e., implement all three
coordinates, and ensure that their tools are standards-based and business model-
driven.

 Tools should automatically transform higher-level platform-independent models
into lower-level platform-specific models and generate code automatically. Cur-
rent tools are not sophisticated enough to fully provide the transformations from
PIM to PSM and from PSM to code. The developers need to manually improve
the transformed PSM and / or code models.

 The extent to which portability can be achieved depends on the automated trans-
formation tools that are available. For popular platforms, a large number of tools
will undoubtedly be available. For less popular platforms, the user may have to

 A New Framework for Evolving Applications 299

use add-on tools that support transformation definitions, or write proprietary trans-
formation definitions.

 Cross-platform interoperability can be realized by tools that generate both the
PSMs and the bridges between them. Existing tools are not so advanced to cope
with this requisite.

Undoubtedly, it is a matter of time before software vendors overcome the above-
mentioned limitations. However, there exist a number of areas that can be improved.
More specifically, MDA fails to:

 Ensure Consistency between the Produced Code and the Preceding Models.
Even if vendors succeed in building transformation tools that fully generate the
required code based on the specifications modelled in the PSMs, one cannot guar-
antee that developers will not interfere manually with the generated code. Conse-
quently, the consistency between the three cornerstone models is unstable.

 Cope Efficiently with the Problem of Evolving Requirements. In MDA, every
new change requires code to be regenerated and recompiled, and the final applica-
tion to be redeployed. What’s more, the arbitrary realization of changes may cre-
ate gaps between the three models. Last but not least, MDA can provide access to
data that have been manipulated by previous versions of the application, only by
maintaining different installations of the applications, approach that is a neither
practical, nor elegant.

Those limitations are inherent to the MDA’s comprehensiveness, since it is very
difficult to elaborate on a more sophisticated solution while in parallel coping with all
types of applications.

5 The Proposed Framework

Motivated by the above-mentioned findings related to the MDA paradigm, its core
principles, and the latest practices adopted by Microsoft and Borland, we introduce an
innovative extension for the realization of a development and deployment framework
targeted to web-based business applications. The proposed framework (depicted in
Fig. 2) will be structured on the basis of a universal database schema (meta-model).

Development will be supported by components (modelling tools) that will elicit
functional specifications from users and transform them in formal definitions, and by
data structures (part of the meta-model) that will be utilized for the storage of the
definitions.

Deployment will be supported by generic components (meta-components) that
will be dynamically configured at run-time according to the functional specifications
provided during development, and by application-independent data structures (part of
the meta-model) that will hold all application-specific data.

The following two statements outline the philosophy of the proposed solution:

 No code (SQL, Java, C++, JSP, ASP, etc.) will be generated for the produced ap-
plications; just run-time instances of generic components will be created.

300 G. Voulalas and G. Evangelidis

Fig. 2. Structure of the Proposed Development and Deployment Framework

 There will always exist one deployed application, independently of the actual number
of running applications. Application-specific behaviour will be rendered by this uni-
versal application according to the functional definitions that are maintained in the
database. In other words, functional and presentation specifications are shifted from
the middle and front tier respectively to the database tier (taking as basis a 3-tier ap-
proach that is the most outstanding architectural paradigm). Response to business
changes is instant, simply through the manipulation of data tuples.

More specifically, the proposed framework includes the models that are described
below.

5.1 Domain Model

The Domain Model is a business-oriented model that maps to the MDA Platform In-
dependent Model and covers the coordinates presented in Section 2. It defines the
structure of the data that the application is working on (objects, attributes, and asso-
ciations), along with their behavioural aspect (methods) and business rules. It is
mainly structured on the basis of the Object-Oriented paradigm, augmented with the
extensions introduced by the Object Constraint Language [10], [3] for the description
of constraints that govern the modelled objects, plus elements from an acceptable
business rules classification scheme [1], [2], [6], with the Ross method [1] being the
prevalent. Therefore, its main entities are:

 Business objects. Business objects are created, routed, processed and archived
within the different business activities. They carry the information that is neces-
sary for the execution of a process. Example: Travel Application, Accommodation
Proposal, Air Ticket, and Traveller.

 A New Framework for Evolving Applications 301

 Status: Each business object passes through different statuses during its lifecycle.
Example: Un-submitted, Submitted, and Rejected (for the travel application).

 Attributes: Define the static aspect (information) of a business object. Example:
Cost (numeric), Notes (alphanumeric), and Check-out date (for the Accommoda-
tion Proposal).

 Methods: Define the dynamic aspect (behaviour) of a business object. Example:
Submit, Approve, and Reject (for the Travel Application).

 Association: Represents structural relationship between business objects that exist
for some duration (in contrast with transient links that, for example, exist only for
the duration of an operation). Example: A Travel Application is associated with
one or more Accommodation Proposals.

 Argument: A parameter required for the execution of method. Example: Submis-
sion notes and priority are arguments of the ‘submit’ method.

 Term: A noun or noun phrase with an agreed upon definition. A term is essentially
an object or attribute that is included in a business rule. Example: Air Ticket, fare.

 Fact: A complete statement connecting terms (via verbs or prepositions) into sen-
sible, business-relevant observations. A fact is essentially a business-significant
association. Example: A Travel Application is associated with at least one Travel-
ler.

 Computation Rule: Provides an algorithm for arriving at the value of a term. A
computation rule is essentially a business-significant method. Example: The total
cost of a Travel Application is computed as the air tickets fare plus the accommo-
dation cost.

 Pre-condition: A condition that must hold before executing an operation. It typi-
cally evaluates one or more attributes. Example: The ‘submit’ method can only be
executed upon those travel applications that are un-submitted.

 Post-condition: Defines either the return value of a method or modifications on the
value of component attributes that must be performed. Example: The status of a
Travel Application changes to ‘submitted’ after the execution of the ‘submit’
method.

 Guard: Force the execution of operations anytime triggers (i.e. all attributes in-
volved in the guard condition) get a specific state. Example: Each time an Ac-
commodation Proposal gets approved by the travellers (i.e., its status changes to
‘approved’) the status of the associated Travel Application is updated.

 Invariant Constraint: A condition that must always hold as long as the system op-
erates. It typically constraints the value of an attribute. Example: The value of the
attribute ‘numberOfPassengers’ should always be greater than zero.

Besides business rules and data processing logic, every business application in-
corporates mechanisms for enterprise modelling, business relationships establishment,
role assignment, and personnel administration. Thus, the Domain Model embraces an
additional component, named Enterprise Model, which covers inter-organizational
and intra-organizational aspects. The main entities of this sub-model are:

 Business Role: In each process, one or more business roles are identified. Exam-
ple: Corporation, Travel Agency.

302 G. Voulalas and G. Evangelidis

 Enterprise: The organization that participates in the process by undertaking a spe-
cific business role. In the case of business applications limited to the enterprise
scope, only one organization exists. In the case of business networks or e-
marketplaces multiple organizations exist. Example: Corporation X, Travel
Agency Y.

 Business Units: Departments, branches or affiliated companies of an enterprise.
Example: The accounting department of corporation X

 Partnership: Cooperation relationships established between enterprises (applies
only to business networks and e-marketplaces). Example: The Partnership that has
been established between corporation X and travel agency Y within the CTP (sup-
posing that an e-marketplace that enables the cooperation of travel agencies with
corporate customers exists).

 Partner: An enterprise that participates in a partnership by playing an undertaking
business role. Example: The travel agency Y in the previous partnership.

 Employee: A person employed by an enterprise. Employees usually belong to
business units. Example: Mr. X.

 Role: Represents the responsible actor for the fulfilment of a set of activities
(methods implemented by business objects). An activity can be optionally associ-
ated with more than one role. Example: Traveller, Travel Arranger, Travel Agent,
and Travel Administrator.

 User: An employee that has access to the business application. A user is associated
with one or more roles. Example: Mr. X that access the business application as
traveller.

Although the entities included in the Enterprise model can be implemented as in-
stances of the meta-entities of the core Domain Model, we have selected to handle
them separately for reasons of performance. Thus, instead of dynamically configuring
the meta-entities to render the desired functionality, we utilize standard entities. This
differentiation stems from the fact that the mechanisms implemented by the Enter-
prise Model can be specified in advance, as they are common among all business ap-
plications.

Specifications included in the Domain Model will be stored in a database. The da-
tabase schema should embrace the proposed structure and include all identified enti-
ties (Business Object, Method, Rule, etc.).

As for modelling language, UML including OCL will be extensively utilized
within the Domain Model. However there is need for a specialization of UML for
modelling inter- and intra-organizational aspects, which means that a new UML pro-
file focused on the Enterprise Model should be defined.

5.2 Application Model

The Application Model maps to the MDA Platform Specific Model and focuses on
the targeted platform. The Application Model contains the following three sub-
models:

 Presentation Model: It pictures the overall structure of the presentation elements.
Display pages are defined for every business object based on the identified attributes.

 A New Framework for Evolving Applications 303

Input pages that elicit the information required for the execution of the methods are
defined based on the specified methods and arguments. Pages are interrelated accord-
ing to the identified object associations. In order for the model to include every pres-
entation detail, the domain model should include exhaustive information, such as the
conditions under which attributes are hidden / displayed, the controls that should be
used for the selection of values (radio-button or selection list), formatting properties
for currencies and dates, etc.

 Business Logic Model: Suppose that we select the Java 2 Standard Edition (J2SE)
as target platform. All objects and terms will be mapped to the ‘java.lang.Object’
class. Alphanumeric attributes will be mapped to ‘java.lang.String’ class. A
method (or piece of a method) that returns part of an alphanumeric will be mapped
to the ‘substring’ method that is implemented by the ‘java.lang.String’ class. Simi-
larly, a computation rule will be mapped to a set of primitive methods supported
by the target platform that will be invoked in specific order in order for the rule to
be propagated. In general, all elements included in the Domain Model will be
mapped to fundamental elements of the target programming language. Note that
the mapping of the elements of the Enterprise Model to the elements of the target
language will be much more direct, since the Enterprise Model is not a meta-
model (i.e. included entities are predefined).

 Data Model: Based on the identified objects, their attributes and the way they
associated, a data model is structured. Only persistent objects (i.e. objects that
need to “survive”) are mapped to database structures. The discrimination between
persistent and transient objects is captured in the domain model. Note that since
the part of the data model that covers the data needs of the Enterprise Model has
predefined structure, only the mapping to the selected database system specs (data
types, etc.) has to be conducted for it.

5.3 Operation Model

The Operation model consists of the following building blocks.

 Presentation Model Instance: Run-time instances of generic presentation ele-
ments (e.g., Java Server Pages or Active Server Pages that obey to specific Cas-
cading Style Sheets).

 Business Logic Model Instance: Run-time instances of the generic functional
components (meta-objects) that render the behaviour of an application-specific ob-
ject. The exact process is the following: application specifications are retrieved
from the database at run-time and the generic components are configured dynami-
cally in order to expose the specified functionality by utilizing reflectional adapta-
tion techniques (reflection is the process by which a program can modify its own
behaviour and is supported by many object-oriented programming languages). For
each different technology utilized at Application Level (J2SE, .NET, J2EE), dif-
ferent components should exist. Practically speaking, every programming lan-
guage that supports reflectional behaviour can be utilized.

 Data Model Instance: The part of the unified database schema that will hold the
realizations of the business object instances (e.g., realizations of the travel applica-
tions, orders, products, etc.). The database schema will be independent of the ap-
plications, i.e., its structure will be fixed. In [15] a framework for dynamically

304 G. Voulalas and G. Evangelidis

evolving database environments is introduced. Similar to our approach it is based
upon a database structure that is independent of applications. Changes to the data
structure of the application result to record modifications, instead of changing the
schema itself. In comparison to our approach the specific research effort focuses
only to the data side of applications.

Note that the three sub-models included in the Application Model are not trans-
formed to code at operation level, except for the part of the Business Logic Model
that originates from the Enterprise Model. Instead, the definitions that they include
are coupled with the generic components (presentation elements, functional compo-
nents, and database) in order for the required functionality to be rendered.

5.4 Discussion

Note that the three sub-models included in the Application Model are not transformed
to code at operation level, except for the part of the Business Logic Model that origi-
nates from the Enterprise Model. Instead, the definitions that they include are coupled
with the generic components (presentation elements, functional components, and da-
tabase) in order for the required functionality to be rendered.

The proposed framework responds to the challenges identified in Section 4 as fol-
lows:

 Consistency between the Produced Code and the Preceding Models. Since no
code is generated and the middle model is generated automatically in its entirety,
all changes are realized through the Domain Model.

 Efficient Handling of Evolving Requirements. Having shifted the functional and
presentation specifications from the middle and front tier respectively to the data-
base tier we can easily achieve evolution management by applying standard data
versioning techniques. In case the static (attributes) or dynamic (methods) defini-
tion of a business object is modified this results in modifications to the underlying
data instances, i.e., we can deal with changes at deployment time without recom-
piling and redeploying the application. What’s more we can, at anytime, refer to a
previous version of an application and examine old data in their real context by re-
trieving the corresponding data instances from the database, without the need of
maintaining multiple installations.

What’s more, in full compliance with the MDA principles, the framework en-
hances productivity by incorporating application generation features through the elici-
tation of high-level, formal definitions that are automatically transformed to low-level
technical specifications, and supports portability through the Application Model that
can be theoretically supported by any programming language that supports reflection
and by any database system.

6 Conclusions and Further Research

In this paper we examine the development and deployment of web-based business
applications through a different perspective: our main aim is to elaborate on and limit
the side-effects that are induced by the continuously changing requirements, while

 A New Framework for Evolving Applications 305

conforming to the principles introduced by the MDA paradigm and retaining its un-
disputable advantages, i.e., improved productivity, efficient documentation, effective
maintenance, production, portability, and interoperability. For this reason, we suggest
transferring the functional specifications of the application from the components
(code) to the database and utilizing them at run-time in order to configure generic
components. The development and deployment platform will be based upon a unified
database schema. The generic components will be built with the use of a program-
ming language that supports reflection. These meta-components will be configured at
run-time in order to render the application-specific functionality. Dynamic functional
specifications will let end-users deal with changes at deployment time without recom-
piling and redeploying the application. What’s more, with simple data versioning
techniques that enable the retrieval of previous specifications, the operation of previ-
ous versions of an application will be feasible through the same, unique installation.
Last but not least, since all changes pass through the Domain Model, the consistency
between the three cornerstone models will not be compromised.

It should be clear that our goal is to present an interesting perspective that could
somehow extend the MDA framework and not replace it. Besides, one can easily
identify a set of drawbacks in comparison with the MDA framework:

 The proposed framework has narrower scope, since it focuses on web-based busi-
ness applications.

 MDA handles efficiently integration with other systems, while the current formu-
lation of the proposed framework supplants the specific coordinate.

 Indisputably, a solution that is build upon a meta-model and extensively utilizes
reflection requires increased computational resources compared to a traditional
one.

The first constraint is enforced by the fact that is practically infeasible to create a
generator that can produce any application [5], [14] and is in compliance with the
latest developments as pictured by the initiatives undertaken by major software play-
ers. This is the main reason for considering and evaluating this framework as an ex-
tension of the MDA that targets on a specific group of applications. The third draw-
back is minor, since the availability of powerful computational resources encourages
the elaboration of sophisticated solutions. Working towards a ‘lighter’ solution, we
will consider adopting partial behavioural reflection [13]. We also plan to address the
issue of interoperability.

Future research will focus on:

 Extending the Framework with a coordinate that will cover the need for cross-
platform interoperability. This coordinate will be structured on the basis of the
Web Services paradigm.

 Elaborating on a New UML Profile for the modelling of business entities.
 Implementing the Required Infrastructure. After finalizing the structure of the

framework and identifying all main entities, we have to elaborate on the database
schema. Performance issues should be seriously taken into account in the selection
of the adopted data-modelling paradigm (relational, object-relational, object). The
next step will be the specification and implementation of the meta-components
along with the components that will support the development process. The derived
prototype will verify the viability and efficiency of the proposed solution.

306 G. Voulalas and G. Evangelidis

References

1. Business Rules Forum 2004 Practitioners Panel. The DOs and DON’Ts of Business Rules,
http://www.brcommunity.com/b230.php?zoom_highlight=panelists

2. Butleris, R., Kapocius, K.: The Business Rules Repository for Information Systems De-
sign. In: ADBIS Research Communications, pp. 64–77 (2002)

3. Coronato, A., Cinquegrani, M., Giuseppe, D.P.: Adding Business Rules and Constraints in
Component Based Applications. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002,
DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 948–964. Springer, Heidelberg
(2002)

4. Greenfield, J.: Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools (2004),
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnbda/html/softfact3.asp

5. Guerrieri, E.: Case Study: Digital’s Application Generator. IEEE Software 11(5), 95–96
(1994)

6. Herbst, H.: Business Rules in Systems Analysis: a Meta-Model and Repository System.
Inf. Syst. 21(2), 147–166 (1996)

7. Kleppe, A., Warmer, S., Bast, W.: MDA Explained. The Model Driven Architecture: Prac-
tice and Promise, ch. 1. Addison-Wesley, Reading (2003)

8. Miller, J., Mukerji, J.: Model Driven Architecture – A Technical Perspective (2001),
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

9. Miller, J., Mukerji, J.: Technical Guide to Model Driven Architecture: The MDA Guide
v1.0.1 (2003), http://www.omg.org/cgi-bin/doc?omg/03-06-01

10. OMG. Object Constraint Language Specification (2003),
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

11. Roddick, J.F., Al-Jadir, L., Bertossi, L.E., Dumas, M., Estrella, F., Gregersen, H.,
Hornsby, K., Lufter, J., Mandreoli, F., Mannisto, T., Mayol, E., Wedemeijer, L.: Evolution
and Change in Data Management - Issues and Directions. SIGMOD Record 29(1), 21–25
(2000)

12. Smith, H., Fingar, P.: Business Process Management: The Third Wave – Business Process
Management Systems. Meghan-Kiffer Press (2002)

13. Tanter, E., Noye, J., Caromel, D., Cointe, P.: Partial behavioral reflection: spatial and tem-
poral selection of reification. In: OOPSLA, pp. 27–46 (2003)

14. Wu, J.-H., Hsia, T.-C., Chang, I.-C., Tsai, S.-J.: Application Generator: A Framework and
Methodology for IS Construction. In: 36th Annual Hawaii International Conference on
System Sciences (IEEE - HICSS), pp. 263–272 (2003)

15. Yannakoudakis, E.J., Tsionos, C.X., Kapetis, C.A.: A new framework for dynamically
evolving database environments. Journal of Documentation 55(2), 144–158 (1999)

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 307–322, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Smart Business Objects for Web Applications: A New
Approach to Model Business Objects

Xufeng (Danny) Liang and Athula Ginige

School of Computing and Mathematics, University of Western Sydney, Sydney, Australia
danny@scm.uws.edu.au, a.ginige@uws.edu.au

Abstract. At present, there is a growing need to accelerate the development of
web applications and to support continuous evolution of web applications due
to evolving business needs. The object persistence capability and web interface
generation capability in contemporary MVC (Model View Controller) web
application development frameworks and model-to-code generation capability
in Model-Driven Development tools has simplified the modelling of business
objects for developing web applications. However, there is still a mismatch
between the current technologies and the essential support for high-level,
semantic-rich modelling of web-ready business objects for rapid development
of modern web applications. Therefore, we propose a novel concept called
Smart Business Object (SBO) to solve the above-mentioned problem. In
essence, SBOs are web-ready business objects. SBOs have high-level, web-
oriented attributes such as email, URL, video, image, document, etc. This
allows SBO to be modelled at a higher-level of abstraction than traditional
modelling approaches. A lightweight, near-English modelling language called
SBOML (Smart Business Object Modelling Language) is proposed to model
SBOs. We have created a toolkit to streamline the creation (modelling) and
consumption (execution) of SBOs. With these tools, we are able to build fully
functional web applications in a very short time without any coding.

Keywords: Business Object, Modelling Language, Web Engineering, Rapid
Development.

1 Introduction

Web programming languages (such as PHP, Python, Perl, ASP, Java, etc) and
database technologies have been around for a long time with major web applications
developed using them. However, with the increased time-to-market pressure, we can
no longer afford the time to work with rows and columns in sophisticated databases,
and create business web-based applications from scratch. Thus, there is a growing
need to rapidly develop web applications that can evolve meeting the ever-changing
business needs. One of the challenges in developing web applications is to minimise
the gap between the development domain and the actual problem domain. This has
led to investigate ways of creating better modelling techniques that empowers users to
express their mental model at a higher-level of abstraction. Further to find smarter
tools that can capture and convert, for implementation, those models into software

308 X. (Danny) Liang and A. Ginige

objects in order to create powerful web applications (i.e. by executing those models).
Our work builds on early work done by Reenskaug in MVC (Model-View-
Controller): a modelling approach to bridge the gap between users’ mind and
computer data [18], [17]. Moreover, empowering users and allowing trained end users
to maintain or even enhance existing applications is a cost-effective way to support
web application evolution [23].

The OO (Object-Oriented) paradigm provides us with techniques to build software
applications by mapping real world objects directly into software objects. In the past,
object mapping techniques have proven to be successful in software engineering
projects [6]. These techniques provided a natural correlation between real world
objects and objects in the software and database domain. Additionally, OO design
techniques are applicable of handling the domain evolution [4]. The encapsulation
concept in OO provides us with a systematic way to handle software evolution.
System behaviours are encapsulated inside the objects as methods. This provides a
means for software evolution to be handled gracefully by delegating responsibilities
to objects. The ability to systematically handle software evolution makes object
orientation a suitable technique for implementing web applications.

However, the traditional object concept has a low level of abstraction and has been
designed for use by software developers. On the contrary, business objects are
“business-focused” software objects modelled to represent real world business entities
[11]. They operate at a higher level of abstraction than software objects. Business
objects offer representations of organisational concepts, such as resources and actors,
which collaborate with one another in order to achieve business goals [5]. Maamar
and Sutherland [13] state that business objects provide “an insight into what aspects
of a business should be delegated, how these aspects may evolve, and what will be the
effect of specific changes”, and through business objects, “managers and users can
understand each other by using familiar concepts and creating a common model for
interactions”. Thus, an important attribute that distinguishes business objects from
traditional software objects is the fact that they can be understood by both business
(business managers and users) and software (software developers and the software
itself). They are considered as the bridge between software developers and domain
experts.

While object-orientation has been long proven suitable for building business
applications, existing web development tools and frameworks do not accommodate
the need for high-level modelling and rapid development of web-based business
applications. What is required instead are business objects that make provision for
web interfaces and behaviours, we call those web-ready business objects. Web-ready
business objects should have associated conventions such as:

• Providing a file upload facilities for documents or other binary media contents
• Displaying URL as hypertext links, emails addresses as mailto hypertext links
• Rendering calendars to assist user to enter date information
• Showing interactive maps for location related attributes (e.g. address)
• Offering the suitable media players for video content.

In order to speed up the development of web-based business applications, we need
business objects that incorporate those conventions. These conventions are imperative
directives that contribute to “web-readiness” of business objects.

 Smart Business Objects for Web Applications 309

As a consequence, web-ready business objects should embrace semantic-rich, web-
oriented attributes. These web-oriented attributes have high-level, semantic-rich
abstract data types (ADT) such as: email, URL, image, video, document, and date.
These abstract data types require special validation logic, content handling methods,
and presentation mechanisms. An image attribute for example, we need to validate its
filename appropriately, provide an upload facility to record the image’s filename to
the database and store the actual image file to a preconfigured location on the server
(assuming that we are not storing binary data inside the database), and render the file
content as image to the web browser (via the tag if HTML is used). Web-
oriented attributes can affect different layers of a web application. The benefit of
being able to program using abstract data types is well understood in programming
(see [12]). Over decades, programmers have taken advantage of language-provided,
built-in data types, such as “integer”, to perform normal operations, such as arithmetic
calculations, without worrying about the underlying low-level instructions that are
required to be carried out by the machine. Similarly, in the context of web
applications, we need the direct support for using richer and higher-level abstract data
types in order to represent web-oriented attributes of business objects.

At present the responsibility of handling these web-oriented richer data types is
passed down to the applications logic, based on primitive data types, such as “string”
or “text”. For example, an email address attribute is not considered as type “email”,
but type “string” or “text”. As a consequence, web developers need to craft the same
regular expression for validating the email address from users’ input and customise
the necessary web templates to render the email attribute as an email hypertext link
(mailto) in every web application they build. This is mainly due to the fact that
“email” is not a built-in, language-provided data type. The missing notion of web-
ready business objects does not only decelerate web application developments, but
also poses impediments to business objects being modelled at a higher level of
abstraction. We cannot simply model: “Employee has photo”, and expect a file
upload facility is provided for updating the photo attribute and a correctly displayed
image of the uploaded photo is rendered for viewing.

Thus, in this paper, we propose a Smart Business Object (SBO) concept. SBO is
designed to empower users by addressing the issues in modelling and building web
applications. SBO uses representations of business objects and their attributes to
achieve a higher-level of design abstraction in web applications leading to faster
development. We will demonstrate the concept of SBO through the use of the
lightweight SBO Modelling Language (SBOML) to model a SBO and create different
views of SBO as web applications.

2 Related Work

Recent MVC web development frameworks such as [2], [7], [20] and Model-Driven
Development tools such as [1], [14], [21] provided the capability of auto generating
basic web user interfaces for CRUD (Create Retrieve Update Delete) operations for
user-defined persistent objects. The built-in capabilities of object persistence and web
presentation UI generation in contemporary tools or frameworks have simplified the
process of developing business objects for the web. However, the real-world

310 X. (Danny) Liang and A. Ginige

semantics and the high-level abstraction required for rapid modelling and developing
of business objects for enterprise web applications is still missing.

Most current tools rely on low-level database column types to determine the web
presentation UI for the corresponding business object attributes. For example, an
attribute is rendered as a textbox if its column type in the database is ‘text’. However,
the semantics offered by database column type is insufficient for defining business
objects in web applications. It is tedious and unproductive for developers having to
craft the same regular expression to validate the email attribute of a business object.
For example, in Ruby on Rails, each time we need to validate an email address
attribute of a business object, we need to code the same regular expression:

class Employee < ActiveRecord::Base

 validates_presence_of :first_name, :last_name, :email
 validates_format_of :email,:with => /^([^@\s]+)@((?:[-a-z0-
9]+\.)+[a-z]{2,})$/

end

Modelling business objects in most model-driven tools via UML class diagram
variants are also low-level and lack high-level semantics suitable for modelling web-
ready business objects. For example, we have to model “Employee has email:string”
and then customise in different layers of an web application (such as presentation
layer and domain layer (refers to the layers of enterprise application defined in [9]))
in order to make the email attribute to be rendered as mailto hypertext link and to be
validated properly from user inputs.

Fig. 1. An UML class diagram for an employee class

 The Naked Object [15] address the problem of “behaviour completeness” in
business objects. Approaches such as ARANEUS [3], WebML [8], and OOHDM
[19] have focused on issues surrounding the modelling of content, navigation, and
structure in web applications. Most of them have abstracted content into traditional
business objects. However, none has looked at “web-readiness” of business objects
and theirs potential in raising the level of abstraction in modelling business object in
order to accelerate the development of web applications.

3 Smart Business Object

Smart Business Object (SBO) is a web-ready business object that supports semantic-rich,
web-oriented attributes suitable for implementing web-based business applications. As

 Smart Business Objects for Web Applications 311

previously mentioned, these attributes will support convention settings such as file
upload facility for documents, displaying URLs as hypertext links, rendering a calendar
to assist user to enter date information, etc. This enables SBOs to auto generate
appropriate web interfaces that will accelerate the development of web-based business
applications. Figure 2 is an example of rendering a class of SBO called “employee” as a
web table with search capability. In this example, the contents of the email address
attribute are displayed as mailto hypertext links and the content of the photo attribute is
displayed as images.

Fig. 2. Rendering an SBO as a table with search capability

To assist the generation of useful web user interfaces (such as in Figure 2) for
rapid web application development, each SBO have a rich set of built-in methods
(operations) for rendering commonly used web user interfaces, such as tables, forms,
navigation menus, etc. These user interfaces allow end users to interact with SBOs via
a web browser to perform CRUD operations or execute various custom methods of
SBOs.

The one line of code in Perl used to generate the user interface in Figure 2 is as
follow:

organisation::employee->render_as_table(create => 1, edit => 1,
delete => 1, search_form => 1);

In other words, render the “employee” SBO in the “organisation” namespace as a
table, and allow user to have create, view, edit, delete, and search capability to the
“employee” SBO.

Users can create fully functional web applications by modelling SBO and
executing them to generate various web user interfaces. The concept of web-oriented
attributes allows SBOs to be modelled at a high-level of abstraction than conventional
modelling approaches.

3.1 High-Level Architecture of Smart Business Object

SBO is a lightweight component that can be easily integrated into existing web
frameworks for building both data intensive and process intensive web applications.
The SBO is layered on top of a persistent object layer (Figure 3). A persistent object

312 X. (Danny) Liang and A. Ginige

layer is usually realised using ORM (Object Relational Mapping) technologies unless
an OODBMS is used. The reference implementation of SBO uses ORM technologies
and relational database to achieve object persistence. The Builder component is
mainly responsible for modelling SBO. The interpreter for the SBOML lives inside
the Builder component.

SBOs are organised by their namespaces. The relationships among SBOs are handled
at the object level (as opposed to being at the database level). The advantage of this is
that SBOs can establish relationships with other SBOs coming from physically diverse
databases. Thus, the role of the Metaobject component is to maintain the relationship
definition between SBOs. Moreover, custom SBO schemas can be used to control the
behaviours of (e.g. look and feel, localisation, etc) individual SBOs. Thus we need to
preserve the mapping information between customs schema and SBOs. This information
is also maintained by the Metaobject component. Furthermore, the Metaobject
component also maintains the credential information required to connect to the
underlying data sources.

Fig. 3. Smart Business Object high-level architecture

As previously mentioned, SBO have a rich set of built-in methods (operations) for
rendering commonly used web user interfaces. The Renderer component is
responsible for rendering SBOs. It has a host of APIs (Application Programming
Interfaces) to support the generation of various web user interfaces for SBOs. Each
API provides a rich set of options to achieve fine grain control over the behaviours of
the generated user interfaces. For example, in Figure 2, we have enabled create, edit,
view, and delete access for the “employee” SBO. Each API utilises one or more
templates. Thus, by specifying customised templates to the rendering APIs, we are
able to achieve different look and feel for the generated user interfaces. If the default
set of user interfaces are insufficient for certain application, we could extend the
existing APIs (by subclassing them) or add new APIs.

3.2 The Smart Business Object Schema

The SBO has a default schema to control the global behaviours of all SBOs. The
schema defines a set of default templates used by each rendering API. Thus, by
specifying different templates in the default schema or specifying custom schemas,
we can change the look and feel of various user interfaces generated by the Renderer.

Additionally, the schema defines the behaviours of each attribute type. By custo-
mising the attribute type definitions in the default schema or by specifying custom

 Smart Business Objects for Web Applications 313

schemas, we can easily change the behaviours of existing SBO attributes or add new
ones.

In turn, each attribute type definition defines a number of behaviours of an
attribute, such as: validations, localisation, option values, and formatting and
conversion of values. SBO generates the appropriate web user interfaces for its
attributes based on their nominated attribute type given when the SBO was modelled.
For SBO attributes whose attribute type is not explicitly defined during the time when
the SBO is modelled, SBO will aggregate the meta-information of the underlying data
source, such as the table definition of a database, and match them against the known
attribute types defined in the specified schema to logically derive the most suitable
(conventional) web user interfaces for those SBO attributes at run-time.

In this way, the modelling of SBO can be greatly simplified. For example, we can
simply model “employee has email”, then the generated “employee” SBO
automatically and smartly considers its email attribute as being of the high-level type
“email” without extra declaration. This feature adds smartness to SBOs. Thus, we are
able to achieve a much higher level of abstraction than traditional modelling
approaches.

A partial extract from the default SBO schema implemented in XML is given
below:

<?xml version="1.0" encoding="UTF-8" ?>
<sbo version = '0.0.28'>
 …
 <smartness>1</smartness>

<table_template>
table.tt

</table_template>
 …
 <attribute_definition>
 …
 <attribute>
 <name>salary<name>
 <validate>MONEY</validate>
 <format>
 <to_ui>

Renderer::_to_ui_money
</to_ui>

 </format>
 <sort>NUM</sort>
 <default>0.00</default>
 <maxlength>14</maxlength>
 </attribute>
 <attribute>
 <name>photo<name>
 <type>file<type>
 <validate>FILENAME</validate>
 <sort>NAME</sort>
 <convert>
 <to_ui>

Renderer::_to_ui_file
</to_ui>

314 X. (Danny) Liang and A. Ginige

 <to_db>
Renderer::_to_db_file

</to_db>
 </convert>
 <format>
 <to_ui>

Renderer::_to_ui_image
</to_ui>

 </format>
 </attribute>
 <attribute>
 <name>gender<name>
 <options>
 <option>male</option>
 <option>female</option>
 <options>
 </attribute>

…
 </attribute_definition>

…
</sbo>

In the example schema, “<smartness>” defines whether SBO should automatically
derive the high-level attribute types for its attributes. The “<table_template>”
element defines that the “table.tt” template file will be used for the rendering API(s)
responsible for rendering SBOs as a web table.

Different attribute types are defined within the “<attribute_definition>”
element. For example, in the “gender” attribute, we have specified two option
values: “male” and “female”. For the “photo” attribute, we have specified various
trigger functions to control the conversion and formatting behaviours. Firstly, we
define that “photo” is a “file” type, such that a file upload input field is provided
by default. Before saving the value from users’ input (usually via web forms generate
by the SBO), the “_to_db_file” function is triggered, such that the filename of the
uploaded image file is saved in the underlying database and the actual binary image
file is saved on a preconfigured location on the server. Similarly, during retrieval,
each value of the “photo” attribute is sent to the “_to_ui_file” trigger function in
order to construct the necessary URL path needed access the image file on the server.
Then it is sent to the “_to_ui_image” function for formatting, such that the values
are displayed as images on users’ web browser (such as via the HTML tag).
The “employee” SBO in Figure 2 is rendered utilising various high-level attribute
types defined in the default SBO schema, including “photo” attribute type that we
have just discussed. We can always define new trigger function in order to handle
special attribute types.

3.3 Smart Business Object Modelling Language

According to Pilone and Pitman [16], modelling is “a means to capture ideas,
relationships, decisions, and requirements in a well-defined notation that can be applied
to many different domains”. Domain modelling is the building of an object model of the
domain that incorporates both behaviour and data [9]. To streamline the modelling and

 Smart Business Objects for Web Applications 315

creation of SBOs, we need a higher-level modelling language. SBOML (Smart Business
Object Modelling Language) is a lightweight modelling language designed for modelling
SBO.

SBOML is not proposed to be another object-oriented programming language or to
extent existing OO concepts. Its main intention is to be a lightweight modelling
language that leverage on existing, most commonly used (conventional) OO concepts
that are suitable for building web based business applications. It brings OO concepts
closer to users’ mental model. It is designed to allow users to express their domain
specific business objects in near natural language syntax.

In this section, we will use the following conventions to represent the formal
construction of the SBOML:

• Keyword elements are emphasised in both bold and italic
• Normal style texts represent user-defined elements
• When an element consists of a number of alternatives, the alternatives are

separated by a vertical bar (“|”)
• Optional elements are indicated by square brackets (“[” and “]”)
• An ellipsis (“...”) indicates the omission of a section of a statement, typically

refers to recursive statements.

The statement for defining SBO attributes, methods, and ‘has’ relationships
between SBOs is as follow:

in namespace, business object has attribute A [([mandatory]
[type] [which could be option a or | and option b])], [might
have] [many] another business object [(has attribute B,
attribute C, yet another business object (has ...))]... ,[use
method A (method name type from location [option is value,…]
[with attribute A, attribute B,… | with attribute A as parameter
name abc , attribute B as parameter name …]), service B...]

The “in” clause defines the namespace where the subsequent business object(s)
are created within. If the namespace does not exist, a new namespace is created. The
“has” clause defines the attributes of the intended SBO, or ‘has’ relationships with
another intended SBO. The optional “use” clause defines the methods (operations) of
the SBO. We first explain the statement by referencing to a simple example:

in organisation, employee has first name, last name, gender,
date of birth, photo, email, address, home phone, position (has
title, description)

Literally, we have just defined an “employee” SBO and a “position” SBO where

“employee” has a “position”. When the above statement is executed, and we can
directly render the “employee” SBO to the web, such as to generate a web form for
adding new employees (creating new “employee” SBO instances).

As previously mentioned, by default, a SBO predicts its attribute types by
matching the attribute name against the defined attributes types in the default SBO
schema. Thus, when rendered as a web form (Figure 4), the “employee” SBO
automatically:

316 X. (Danny) Liang and A. Ginige

Fig. 4. Rendering the “employee” SBO as a web form

• Enforce first name, last name, date of birth, and email address attributes as
mandatory fields and enforce the appropriate validation rules to all corresponding
fields

• Provide the “male” and “female” option values to the gender attribute according
to SBO schema

• Provide a calendar to assist users for date entry for the “Date of Birth” attribute
and present the date according to users’ locale setting

• Provide a file upload facility for the photo attribute to upload binary image file
• List the available positions as options items (assuming that we have previously

created some “Position” SBO instances), due the relationship established between
the “employee” SBO and the “position” SBO

We can always overwrite the default settings, and explicitly declare the attribute
type. For example:

in organisation, employee has first name, last name,…,
department (mandatory name which could be IT or Sales)

By default, all defined attributes are optional, except for whose attribute types are
defined as mandatory in the specified SBO schema or due to the requirement of the
underlying data source (such as a NOT NULL column of a database table). In the
example, the “mandatory” keyword enforces that the value of the department
attribute cannot be empty (i.e. a mandatory field on a web form). The “name”
specifies the type of attribute. Thus, could be any attribute type defined in the default
SBO schema or in any custom SBO schema. The “which could be … or | and”
clause allows users to specify the possible value set of an attribute. In case of the
department attribute in the example, option values are “IT” and “Sales”. The “and”
keyword implies that multiple selection values are allowed (checkboxes are used
instead of radio buttons).

 The “many” keyword indicates a “has many” relationship, in UML terms, the
cardinality is [1..*]. In combination with the “might have” keyword, i.e. “might
have many”, then the cardinality becomes [0..*]. For example:

 Smart Business Objects for Web Applications 317

in organisation, employee has first name, last name,…, might
have many office (has room number, building id)

 SBO can easily aggregate local functions or remote service as its methods
(operations). This enables SBO to be seamlessly integrated with workflow engines
and SOA (Service-Oriented Architecture) to develop more complex process oriented
business web applications. This can be achieved using the “use” clause. For example:

in organisation, employee has first name, last name,…, use
Notify HR (notify_HR from http://10.10.10.2/notify.wsdl with
first name as param_first_name, last name as param_last_name)

In the example, “Notify HR” is the name of the method for the employee SBO,
and “notify_HR” is the actual name of the remote method “from” the WSDL file
located at “http://10.10.10.2/notify.wsdl”. In the reference implementation,
the SBO support Web Services and XML-RPC for remote invocation. Thus, the
“type” keyword could be: Local (for executing local application APIs), Web Service,
or XML-RPC. The “with” keyword is used to indicate the mapping of the attributes
of the SBO to the required parameters of the remote method. In the example, when
the “notify_HR” method is executed, the value of the first name and last name of an
“employee” SBO instance is passed to the “param_first_name” parameter and the
“param_last_name” parameter respectively. Depending on the nature of the remote
method, more arguments, such as URI, may be required to identify and execute the
remote method, thus the clause within the squarely blanket allows user to specify key-
value pairs for any optional argument that is needed.

 After incorporating the changes to example shown in Figure 4, when we retrieve
an instance of the “employee” SBO and render it as a web form again, it would
generate the screen shown in Figure 5. Now, users can assign a department, multiple
offices to the employee and click the “notify HR” button to execute a web service.

We can use the following statements to explicitly define relationships among
existing SBOs. For “has” relationships, we could use either:

Fig. 5. Rendering the “employee” SBO as a web form with a department, multiple offices and a
new method

318 X. (Danny) Liang and A. Ginige

in namespace, business object has| might have another business
object [as attribute X] [via yet another business object]

or

business object in namespace has| might have another business
object in another namespace [as attribute X] [via yet another
business object in yet another namespace]

The second construct allows SBOs to establish relationships across namespaces.
The “as” clause is to nominate a specific attribute as a reference to a foreign SBO
instance. For example:

in organisation, employee might have employee as supervisor

In the above example, the “employee” SBO has a self-
referential “has” relationship, such that an employee may
have a supervisor, which is also an employee.

The “via” clause is a shorthand for specifying “many-to-many” relationships. For
example:

in organisation, employee has car via company car rental

Similarly, to define “is a” relationships (inheritance) between SBOs, we can use
either of the following statements:

in namespace, child business object is parent business object

or

child business object in namespace is parent business object in
another namespace

For example:

in organisation, employee is person

3.4 Creating Web Applications Using Smart Business Object

The reference implementation of SBO is deployed on a web framework called
CBEADS© [10]. We have created a SBO lightweight toolkit, which consists of the
SBO Builder and the SBO User Interface Generator on the CBEADS© framework.
They are designed to streamline the creation (modelling) and consumption
(execution) of SBOs.

The SBO Builder (Figure 6) allows users to model and create SBOs and relationships
among them using the SBOML. The SBO Builder can also auto-generate a graphical
representation of any modelled SBOs (Figure 7).

The SBO User Interface Generator (Figure 8) allows users to easily create
applications on the CBEADS© framework by rendering SBOs using the SBO
rendering APIs. It also allows users to customise various options supported by the
SBO rendering APIs. The SBO toolkit allows fully functional web applications to be
created without any coding.

 Smart Business Objects for Web Applications 319

Fig. 6. The SBO Builder

Fig. 7. An auto-generated graph of the modelled SBOs

3.5 Creating a Customer Relationship Management (CRM) Application

In this section, we will demonstrate how we can use SBOs to generate a lightweight
CRM application on the CBEADS© framework. According to the actual business
requirements, we need to first identify the actors and their actions, for example:

• Potential customers can make enquiries about products, request sales people to
visit them to discuss about products, and make purchases

• Sales persons need to keep track of customers, visits, and sales orders.

Next, we need to identify the necessary business objects:

• A customer has first name last name, email address, phone number, and address
• A sales person has first name, last name, and phone number
• An enquiry has title, question, answer, and date

320 X. (Danny) Liang and A. Ginige

Fig. 8. The SBO User Interface Generator

• A product has code, name, description, price, and enquiries
• A sales order has number, customer, sales person, products, and total amount
• A visit has title, date, time, description, customer, sales person, and sales order.

Using the SBO Builder tool, we can generate those business objects by expressing
them in SBOML:

in crm, visit has title, date, time, description, customer (has
first name, last name, email address, phone number, address),
sales person (has first name, last name, phone number), sales
order (has number(mandatory alphanumeric), many product (has
code, name, description, price, many enquiry (has title,
question, answer, date)), total amount)

The above SBOML expression models all the identified business objects at the
same time. However, we can also model them individually.

Fig. 9. Sales management function assigned to sales people

 Smart Business Objects for Web Applications 321

Lastly, we generate various views (such as Figure 9) of the SBOs purely using the
SBO User Interface Generator and assigned them to the system user groups defined in
CBEADS©. Similarly, we can easily extend the CRM application by modelling
additional business objects, such as suppliers or competitors, to meet the evolving
business needs. Once the business objects and the views of the business objects
based on the actions actors need to perform are identified, we can quickly generate
fully functional web-based applications using the SBO toolkit and the CBEADS©
framework. Thus, the overall development time can be greatly reduced.

4 Conclusions

In this paper, we have introduced the Smart Business Object concept. The SBOs
support semantic-rich, web-oriented attributes. We have presented a modelling
language that allows users to express their mental model at a higher-level of
abstraction. We have created a tool that generates web-ready Smart Business Objects
from the high-level models. We have demonstrated the significant benefits of utilising
Smart Business Object in web application development such as ability to model the
application based on high level business domain objects and very rapid development
of the application using the tools that we have created.

 We have implemented several industry projects using SBOs. A significant project
is an enterprise level application; the Online Course Approval System (OCAS) [22]
developed for University of Western Sydney (UWS). The use of SBOs greatly
reduced the low level modelling activities such as creating ER diagrams and database
schemas and enabled us to rapidly develop OCAS.

References

1. AndroMDA, Cutting Edge MDSD/MDA Toolkit (2005)
2. Apple WebObjects 5 Reviewer’s Guide (2001)
3. Atzeni, P., Gupta, A., Sarawagi, S.: Design and Maintenance of Data-Intensive Web Sites.

In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377.
Springer, Heidelberg (1998)

4. Barstow, D., Arango, G.: Designing software for customization and evolution. In:
Proceedings of the 6th international workshop on Software specification and design (1991)

5. Caetano, A., Silva, A.R., Tribolet, J.: Using roles and business objects to model and
understand business processes. In: Symposium on Applied Computing, Santa Fe, New
Mexico. ACM Press, New York (2005)

6. Casey, R.M.: Object Mappings in a Software Engineering Project. Software Engineering
Notes - ACM SIGSOFT 24 (1999)

7. Catalyst Welcome to Catalyst Development (2005)
8. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling

Language for Designing Web Sites. In: WWW9 Conference (2000)
9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Professional,

Reading (2002)

322 X. (Danny) Liang and A. Ginige

10. Ginige, J.A., Silva, B.D., Ginige, A.: Towards End User Development of Web
Applications for SMEs: A Component Based Approach. In: Lowe, D.G., Gaedke, M. (eds.)
ICWE 2005. LNCS, vol. 3579, pp. 489–499. Springer, Heidelberg (2005)

11. Lhotka, R.: Expert One on One Visual Basic.NET Business Objects. Wrox Press Ltd,
Birmingham (2003)

12. Liskov, B., Zilles, S.: Programming with Abstract Data Types. In: Symposium on Very
High Level Programming Languages (1974)

13. Maamar, Z., Sutherland, J.: Toward intelligent business objects. Communications of the
ACM 43 (2002)

14. OpenMDX openMDX - the leading open source MDA platform (2005)
15. Pawson, R., Matthews, R.: Naked Objects. John Wiley and Sons Ltd, Chichester (2002)
16. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly Media, Inc., Sebastopol (2005)
17. Reenskaug, T.: MODELS - VIEWS - CONTROLLERS (1979a)
18. Reenskaug, T.: THING-MODEL-VIEW-EDITOR:an Example from a planning system

(1979b)
19. Rossi, G., Garrido, A., Schwabe, D.: Navigating between objects. Lessons from an object-

oriented framework. ACM Computing Surveys (CSUR) 32 (2000)
20. Ruby on Rails, Web development that doesn’t hurt. Ruby on Rails (2005)
21. Tangible Engineering, Tangible Architecture (2005)
22. University of Western Sydney, Online Course Approval System (OCAS). University of

Western Sydney (UWS) (2006)
23. Wulf, V., Jarke, M.: The Economics of End-User Development. Communications of

ACM 47 (2004)

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 323–332, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Data Mining Approach to Learning Probabilistic User
Behavior Models from Database Access Log

Mikhail Petrovskiy

Faculty of Computational Mathematics and Cybernetics, Moscow State University
Vorobjevy Gory, Moscow, Russia

michael@cs.msu.su

Abstract. The problem of user behavior modeling arises in many fields of
computer science and software engineering. In this paper we investigate a data
mining approach for learning probabilistic user behavior models from the data-
base usage logs. We propose a procedure for translating database traces into
representation suitable for applying data mining methods. However, most exist-
ing data mining methods rely on the order of actions and ignore time intervals
between actions. To avoid this problem we propose novel method based on
combination of decision tree classification algorithm and empirical time-
dependent feature map, motivated by potential functions theory. The perform-
ance of the proposed method was experimentally evaluated on real-world data.
The comparison with existing state-of-the-art data mining methods has con-
firmed outstanding performance of our method in predictive user behavior
modeling and has demonstrated competitive results in anomaly detection.

Keywords: User behavior modeling, Data mining, Database access logs, Prob-
abilistic models.

1 Introduction

User behavior modeling is one of the most important and interesting problems needed
to be solved when developing and exploiting modern software systems. By user
behavior modeling we mean discovering patterns of user activity and constructing
predictive models based on precedent behavior information. These models allow fore-
casting next user action on the basis of the current activity. Primarily such technique
was oriented to the commercial applications in recommendation systems [12], [8]. At
present time the area of its application is significantly wider. These methods play a
great role in computer security systems [4], [6], where they are used for detecting
malicious or unqualified user actions. Besides, recently user behavior modeling is
applied for analysis, understanding and optimization of the architecture and business
logic of various software systems. Models of user behavior can help to improve the
UI usability, to optimize the database structure and data cashing strategy, to detect
hidden use-cases, etc. Traditionally, data mining techniques are used for constructing
user behavior models. The process of user behavior modeling can be presented as
KDD-process (Knowledge Discovery in Databases), defined as extracting nontrivial,
previously unknown and potentially useful information from large sets of data [10]:

324 M. Petrovskiy

Trace Log
Files

Data
storage

Trace data preprocessing:
cleaning, normalization,

transformation, consolidation

Data mining
methods

User
behavior
models

User models
validation,

visualization and
interpretation

Knowledge

Fig. 1. User behavior modeling as KDD process

On the first stage, necessary data is extracted from log-files, transformed into uni-
fied representation suitable for analysis, and stored in the data warehouse. Then data
mining techniques are applied for building behavior models. Finally, the models are
validated and interpreted by an expert. It is necessary to outline such features of the in-
formation sources used for user behavior modeling as large volume, heterogeneity and
complicated structure of data coming from log-files. But the most significant features
are temporal nature of the data and ordering of user actions. The source log-files can be
of different levels – from high-level application logs [12] and web access logs [8] to
low-level system calls traces [4]. In this paper, we consider the intermediate level, in
particular the database access logs. User behavior modeling on this level has not been
well studied yet and it was considered mainly in the context of optimization of data-
base server settings [2]. Though, from our point of view, user behavior models built
on database level can be very useful in other tasks as well, because nowadays many
modern software systems use relational SQL databases as information storage and all
important user actions leave a trace in the database access log.

The paper is organized as follows. In Section 2 we give the formal problem state-
ment of probabilistic user behavior modeling. In Section 3 we present our new ap-
proach based on classification method of autoregressive type and specially designed
empirical feature map of data from structured log-files into finite dimensional metric
space. This mapping allows taking into account both time and frequency of user ac-
tions. Section 4 is devoted to experiments and comparative analysis on real-world
data. In the final section we formulate main results and contributions of our research.

2 Problem Definition

Traditional probabilistic statement of the user behavior modeling problem is the fol-
lowing [8]. Precedent information on the activity of a user U is given in the form of
ordered sequences of actions),...,,()(21 NAAAUH = . Model of user behavior is de-

fined as the following probabilistic function:

))(),(|(UHUSAP next . (1)

It defines the probability that next user action will be nextA under conditions that cur-

rent user activity is described by the sequence of actions),...,,()(21 SKSS AAAUS =

and historical activity of the user is defined by H(U).

 A Data Mining Approach to Learning Probabilistic User Behavior Models 325

Practically all existing methods of constructing models (1) are based on the follow-
ing propositions. Any user action can be coded as a symbol from some finite alphabet

Ω∈iA . And a training set)}(),...,({)(1 UHUHUH Ltrain = is formed from the H(U),

where)()(UHUHi ⊂ are all available subsequences. Usually)(UH i are selected

consequently by a sliding window method, but sometimes application-oriented meth-
ods are used (e.g. sequences may correspond to user sessions).

Probabilistic models (1) can be applied for solving practical tasks of next action
prediction; detecting anomalies (unexpected user actions); and discovering patterns
and frequent episodes of user activity. For the last problem, it is difficult to indicate
universal performance evaluation measure since representation of the patterns and
frequent episodes depend on the used data mining technique. For the first two prob-
lems general performance evaluation measures do exist. Forecasting of next user ac-
tion nextA is performed according to the formula derived form (1) with the use of
Bayes rule:

))(),(|(maxarg UHUSAPA
A

next

Ω∈
= . (2)

In this case, the performance evaluation measure is hit ratio that is a proportion of
correctly predicted actions to total number of actions. For the anomaly detection, a

threshold cutting (confidence level) α should be specified. Then user action nextA is
considered to be anomalous if:

))(),(|(|{ α>Ω∈∉ UHUSAPAAnext . (3)

Precision of anomaly detection is estimated by standard coefficients [6]: detection
rate and false positive rate. They depend on the threshold value and that is why the
final comparison is performed with the help of ROC-curves [9] representing the mu-
tual dependence of these coefficients.

The most popular traditional data mining techniques applied for constructing prob-
abilistic model (1) are association rules [7], sequential models [8] and autoregressive
classification methods [3]. Although these methods are widely used and demonstrate
acceptable results in many practical applications they all can be criticized for calcula-
tion complexity; using a priori set critical parameters; and either poor accuracy with
good model interpretation or, on the contrary, high accuracy with non-interpreted
models. In addition to these disadvantages, almost all these methods rely on order of
actions and ignore time between actions. We think that in the case of database logs
analysis it is significant defect for the following reasons. There exists tendency that
recent actions have more influence to next possible action then those happened long
time ago. Besides, there might be situations, when single db login is used by several
different persons simultaneously (for example, most public web systems do not pro-
vide individual db logins for their users). In such case the sequences of actions in log
files will be mixed up that will break the order of actions. The only thing to do here is
including time feature in the model.

326 M. Petrovskiy

3 Our Approach

Before we turn to the problem of constructing function (1) we need to define the
structure of database access log in the form of sequences of actions Ω∈iA . Most of

database access logs consist of records of similar structure:

featuresothertimesqleventiduser ,,,, ,

where user id is user login; event is a type of event (e.g., start or finish of a query exe-
cution); sql is SQL text of a query; time is a timestamp; other features can be divided
into execution group that includes numerical characteristics of query execution (e.g.
number of read/write operations, duration, etc); and identification group with discrete
characteristics of query such as identifiers of client process, server’s process, user
aliases, etc. Thus the problem is to map such structure into a finite alphabet. We sug-
gest the following procedure.

DB Access Log Pre-processing Procedure:
Step 1. “Uninteresting” attributes reduction.
Step 2. Numeric attributes descritization.
Step 3. Extracting templates (skeletons) from SQL statement.
Step 4. Mapping discrete attributes combination to finite alpha-
bet Ω .

On the first step we exclude attributes that are not interesting for analyzing. For ex-
ample, db server process id, as a rule, is not interesting for the model. On the second
step the rest numerical attributes are discretizied by some unsupervised discretization
algorithm. In particular, we use equal frequency interval method with small (3-10)
number of intervals. On the next step SQL statement text is processed. We extract its
so called skeleton or, in other words, template, that presents the query syntax with
removed user parameters. We use the approach similar to [14]. SQL statement is con-
verted into the sequence of tokens, where each token has either keyword type (for
SQL language keywords) or name type (for db related names, i.e. table names, fields,
stored procedure, etc.). Let us clarify this idea on the example. Assume we are given
the following query:
SELECT FROM USERS WHERE NAME=’Bob’ AND CITY=’London’

We convert it to the sequence of tokens:
(SELECT,keyword)(FROM,keyword)(USERS,
name)(WHERE,keyword)(NAME,keyword)(AND, keyword)(CITY,name)

Then each unique template gets its unique identifier. Thus, before the fourth step the
initial log file record has the form of vector of discrete attributes, where each attribute
is either discrete attribute of the initial record or SQL template identifier, or interval id
of discretizied initial numeric attribute. Records with the same SQL template, the
same discrete attributes and close numeric attributes have the same representation, i.e.
the same combination of resulting discrete attributes. Such representation of the
similar records identifies the possible action, to which a unique symbol from the al-
phabet Ω is assigned. In this way the alphabet Ω determines the set of all possible

 A Data Mining Approach to Learning Probabilistic User Behavior Models 327

user actions. At the first glance the suggested procedure can be criticized for the pos-
sibility of unbounded growth of the size of the alphabet Ω . In practice, for production
systems being in stable exploitation, it is found that the growth comes to stop quickly
enough, just for few hundreds. Besides, number of different possible actions can be
reduced by grouping them, using clustering or frequent episodes or expert’s domain
knowledge.

After applying this procedure for mapping db access logs structures into the alpha-
bet Ω we can use traditional data mining methods based on association rules, sequen-
tial models or autoregressive classification. However, as we outlined before, these
methods do not take time feature into account, only the order. To avoid this problem
we propose novel approach. Its main idea is constructing empirical feature mapϕ

that explicitly maps an arbitrary sequence of symbols from Ω with timestamps into a
finite-dimension metric space H. First of all, we need to extend the representation of
user actions by adding time labels to them. Then each action from S(U) or H(U) is
described by the pair TimetmA ×Ω∈),(. Let us formulate the basic assumptions for

ϕ mapping:

- recently performed actions have more influence on the upcoming action nextA than
actions performed long time ago;

- requently performed actions have more influence on the upcoming action nextA than
actions performed rarely.

Appropriate background for constructing such mapping comes from the theory of
potential functions [1]. We assume that any possible action Ω∈iA has its own poten-

tial at any moment t. This potential is being reduced proportionally to the time passed
from the moment when the action was performed. The exact form of this reduction is
given by a priori chosen potential function ℜ→×TimeTimePf : . If the sequence

contains the same actions in different times, in accordance to the potential function
theory, their potentials are summed up. In this manner, we define the mapping of the
sequence (of an arbitrary length) of user actions with timestamps into the real vector
space of dimensionality Ω=L :

Ω∈>∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

AtmtUHtmA

tmtPftUH
0),(),(

00),()),((ϕ . (4)

According to (4) the internal “state of a user activity” at any moment t is described by
the set of Ω=L potentials)),((nA tUHϕ . It allows considering both time and fre-

quency features of previous actions.
Functions from RBF class are convenient for use as potential function Pf (4). Po-

tential functions of this type depend only on time interval between actions in series
and do not depend on exact time moments. In our experiments we use exponential
function)exp(),(yxyxPf −−= σ , where parameter σ controls the speed of the

past actions influence vanishing, i.e. how quickly potentials go down. Besides, such
RBF can be efficiently calculated for continuous sequence using the recursive formula
(where 0)0(=Aϕ):

328 M. Petrovskiy

⎪⎩

⎪
⎨
⎧

=+

≠
=

−

−

−−
−

−−
−

n
tt

nA

n
tt

nA
nA

AAet

AAet
t

nn

nn

,1*)(

,*)(
)(

)(
1

)(
1

1

1

σ

σ

ϕ

ϕ
ϕ . (5)

The feature mapping function (4) allows a sequence of actions to be presented as a
feature vector from L-dimensional real vector space. At any moment the “state of the
user activity” is unambiguously described by the given vector. Therefore, it is natu-
rally to use the approach based on autoregressive classification methods for construct-
ing user behavior models. In such case a training set is represented as the set of pairs

Ω×ℜ∈ Ω
Ω∈

t
AA At ,))((ϕ :

t
t

AAtrain AtUH },))(({)(><= Ω∈ϕ (6)

Then learning algorithm is used to construct a multi-class probabilistic classifier of

the form: Ω→ℜ Ω:)(UHF that estimates probabilities (1) for any given state

Ω∈AA t))((ϕ :

))))(((())(),(|()(
t

AAUH
t AtFPUHUSAP == Ω∈ϕ (7)

Since almost all probabilistic multi-class classification method can be applied, when
the input space is finite-dimensional real vector space, we concentrate our attention on
the two main criteria –accuracy of prediction and understandability of the obtained
model for a human expert. From our point of view, decision trees [5], [11] have the
best balance between accuracy and interpretation power among all classification
methods. Tree based methods partition the input feature space into a set of rectangular
regions nRRR ,...,, 21 , and fit a simple model in each one. Usually this simple model is

a class probability distribution. Applying a standard algorithm, e.g. CART [5] or C4.5
[11] to the training set (6) we come to the model that can be represented as a tree,
where each terminal node m is connected with a region mR described by the follow-

ing predicate system:

IF))((upper
AiAi

low
Ai CtC << ϕ AND …

))((upper
AjAj

low
Aj CtC << ϕ AND …

THEN mAA Rt ∈Ω∈))((ϕ

(8)

Here low
AjC and upper

AjC are constants bounding possible value of the potential for ac-

tion Ω∈jA at the moment t. The distribution of class probabilities is associated with

each region mR . For each possible action Ω∈tA we take probability (7) as a ratio of

samples presented in the mR and having class tA ()(mA
RCount t) to the total number

of samples in mR (()mCount R):

)(

)(
)))((|(

m

mA
mAA

t

RCount

RCount
RtAP

t=∈Ω∈ϕ (9)

 A Data Mining Approach to Learning Probabilistic User Behavior Models 329

Class probabilities (9) are considered as estimates (7), and the whole procedure looks
as follows.

User Behavior Modeling Procedure:

Preparation process:
Step 1: For any given db trace find Ω and prepare historical
data H(U) using the proposed log translation procedure.
Step 2: Choose potential function type and parameters for fea-
ture map (4).
Step 3: Convert H(U) into training set (6) using feature map
(4).
Training process:
Calculate regions (8) and class probabilities (9) using decision
tree algorithm (e.g. CART or C4.5).
Prediction process:
At any moment t for any current user actions sequence do the
following:
Step 1: Translate the sequence into S(U) using the proposed log
translation procedure.
Step 2: Calculate potentials Ω∈AA t))((ϕ using (4).
Step 3: For each Ω∈AA t))((ϕ use (8) to find the target region mR
and use (9) to estimate probabilities (7) that define model (1).

It should be noticed that proposed model has simple and meaningful interpretation for
a human expert. It can be visualized as a decision tree with distributions of possible
actions in terminal nodes. Its semantics is described by a system of rules in the form:
“IF at the moment t potentials of the previous user actions are in specified ranges
THEN next user action would be A with probability P”.

4 Experiments

In this section the results of experimental performance evaluation are presented. The
goals of experiments are to check how traditional data mining methods (sequential
patterns and association rules) work on real-world data with our proposed SQL-trace
translating procedure and to compare performance of existing methods to our novel
method, based on time-dependent feature mapping and decision tree learning algo-
rithm. We consider two scenarios: “next action prediction” and “anomaly detection”.

Below we denote our method as Pf-DT that stands for “Potential function feature
space with Decision Tree”. We use recursive exponential RBF (5) as a potential func-
tion in the feature map (4), time is calculated in milliseconds, 1000=σ . In our
method, we use С4.5 learning algorithm with probabilistic cutting threshold [11]. As
competitors we tried Expectation-Maximization based sequence clustering algorithm
(Seq-EM) and Apriori association rules mining algorithm (A-Rules). Both algorithms
are implemented in MS 2005 SSAS [13].

We run experiments on real-world data, collected from MS SQL Server trace logs
and generated by real-world banking intranet application. The task of the application

330 M. Petrovskiy

is registering, evaluating and processing consumer credit requests. An operator enters
and processes customer’s requests in the system. Several real persons usually work
simultaneously under the same operator’s login. We collected traces of operators’
activity in one branch of the bank during two days, one day – for training, another for
testing. There are about 30000 SQL queries per day. Applying SQL trace transforma-
tion procedure we consider only SQL query text, execution time, duration and number
of read/write operations in a query. As a result we obtain the alphabet size

Ω=L =65.

The first series of experiments was for “next action prediction” scenario. To study
how the size of the training set affects the model precision we prepared three training
sets of different sizes: 2 hours, 4 hours and 8 hours (the whole working day) of activ-
ity. The testing dataset is 8 hours of activity in another day. Training time of all algo-
rithms in these experiments was nearly the same, about one minute or less. The
experimental performance results (hit ratio) are presented in the table below:

Table 1. “Next action prediction” experiments

Experiment Settings Algorithm hit ratio
Training: 8h (33856 records) Pf-DT 85.76%
Testing: 8h (28060 records) Seq-EM 59.72%
No anomalies A-Rules 42.47%
Training: 4h (16180 records) Pf-DT 79.77%
Testing: 8h (28060 records) Seq-EM 43.72%
No anomalies A-Rules 41.65%
Training: 2h (4039 records) Pf-DT 51.91%
Testing: 8h (28060 records) Seq-EM 21.07%
No anomalies A-Rules 8.6%

In this scenario our method dramatically outperforms its competitors. Another
thing is that accuracy of all algorithms growths with the size of the training set,
though the difference between 4 and 8 hours is not significant. It means that user ac-
tivity in the investigated application is very stable and we do not need large datasets
to train.

The second series of experiments is devoted to the investigation of the problem of
anomaly detection. To estimate the ability of the algorithms to discover anomalies we
have added to the testing dataset 10% of randomly generated anomalous actions (pos-
sible actions but in a random places). We also tried 1% and 5% but the results turned
out to be very similar to 10%, that is why (and because of space limitation) we leave
only results for 10%. They are presented on ROC curve chart below:

However, unlike other methods, our method reached the detection rate of 100% the
corresponding false positive rate is too big (about 7%). In the area of smaller false
positive rates Seq-EM and even A-Rules outperformed our method. Outstanding per-
formance in the “next action prediction” task and average results in anomaly detection
mean that proposed method very precisely guesses the most expected action, but not

 A Data Mining Approach to Learning Probabilistic User Behavior Models 331

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

False Positive Rate (%)

D
et

ec
ti

o
n

 R
at

e
(%

)
Pf-DT
Seq-EM
A-Rules

Fig. 2. ROC curve for anomaly detection task with 10% anomalies in the testing set (31912
records)

enough accurately estimates the set of all expected actions (that Seq-EM and A-Rules
do). It means that the mechanism of probabilities estimation used in the decision tree
algorithm (9) is not perfect for the anomaly detection task. In the future research we
will check the anomaly detection ability of the proposed approach with other prob-
abilistic multi-class classification algorithms, e.g. with kernel methods [5], and we
hope to obtain outperforming results in this scenario as well.

5 Conclusions

The main contributions of this paper can be summarized as following:

1. New type of data source for user behavior modeling has been considered. This is
the database access log consisting of traces of SQL queries executed by users. It is
promising information source because the major part of modern software systems use
relational databases as information storage, and usually all critical user actions leave a
trace in database access logs.

2. Simple but effective procedure for translating SQL traces structures into a finite
alphabet of symbols has been proposed. It allows analyzing database access log data
with traditional data mining techniques such as sequential mining and association
rules mining methods.

3. Novel method for mining probabilistic user behavior models has been formulated.
Unlike other existing data mining methods it incorporates time feature in the user
model. The empirical feature map, motivated by potential functions theory, has been
proposed for that. Combining this feature map with decision tree algorithm we obtain
new method with following advantages: it is precise enough; it takes into account
time intervals between user actions; it gives understandable for a human expert inter-
pretation of generated behavior models in the form of “IF…THEN” rules.

4. Experimental performance evaluation on real-world data has been conducted. It has
demonstrated that database access logs can be successfully used for user behavior
modeling and reliable models can be constructed. In these experiments, our proposed

332 M. Petrovskiy

method has demonstrated outstanding results in the “next action prediction” scenario
and competitive results in “anomaly detection” scenario.

Acknowledgements

This research is supported by grant of RFFI (Russian Foundation for Basic Research)
05-01-00744 and by grant of the President of Russian Federation MK-2111.2005.9.

References

1. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Method of Potential Functions in the
Theory of Learning Machines. Nauka, Moscow (in Russian) (1970)

2. Dan, P., Yu, S., Chung, J.-Y.: Characterization of database access pattern for analytic pre-
diction of buffer hit probability. VLDB J. 4(1), 127–154 (1995)

3. Debar, H., Becke, M., Siboni, D.: A neural network component for an intrusion detection
system. In: IEEE Symp. on Security and Privacy, pp. 240–250 (1992)

4. Ghosh, A., Schwartzbard, A., Schatz, M.: Learning Program Behavior for Intrusion Detec-
tion. In: 11th USENIX Workshop on Intrusion Detection and Network Monitoring, Flor-
ida, CA (1999)

5. Hastie, T.: The Elements of Statistical Learning. Springer, New York (2001)
6. Lee, W., Stolfo, S.: Data mining approaches for intrusion detection. In: 7th USENIX Secu-

rity Symposium (SECURITY 1998) (1998)
7. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: 4th Int.

Conf. on KDD and Data Mining, pp. 80–96 (1998)
8. Manavoglu, E., Pavlov, D., Giles, C.: Probabilistic User Behavior Models. In: IEEE Int.

Conf. on Data Mining (ICDM-2003), Melbourne, FL (2003)
9. Maxion, R., Roberts, R.: Proper Use of ROC Curves in Intrusion/Anomaly Detection,

Tech. report CS-TR-871, University of Newcastle upon Tyne (2004)
10. Piatetsky-Shapiro, G., Fayyad, U., Smyth, P., Uthurusamy, R.: Advances in Knowledge

Discovery and Data Mining. AAAI Press/MIT Press, Menlo Park (1996)
11. Quinlan, J.: Generating production rules from decision trees. In: 10th International Joint

Conference on Artificial Intelligence, pp. 304–307 (1987)
12. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recom-

mendation Algorithms. In: 10th International World Wide Web Conference, pp. 285–295
(2001)

13. Tang, Z.-H., MacLennan, J.: Data Mining with SQL Server 2005. Wiley Publishing,
Chichester (2005)

14. Valeur, F., Mutz, D., Vigna, G.: A Learning-Based Approach to the Detection of SQL At-
tacks. In: IEEE Conf. on Detection of Intrusions and Malware & Vulnerability Assess-
ment, pp. 123–140 (2005)

PART V

Knowledge Engineering

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 335–347, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Approximate Reasoning to Learn Classification Rules

Amel Borgi

Research Unit SOIE, ISG, Tunis
National Institute of Applied Science and Technology, INSAT

Centre Urbain Nord de Tunis, BP 676, 1080 Tunis, Tunisia
Amel.Borgi@insat.rnu.tn

Abstract. In this paper, we propose an original use of approximate reasoning
not only as a mode of inference but also as a means to refine a learning process.
This work is done within the framework of the supervised learning method
SUCRAGE which is based on automatic generation of classification rules. Pro-
duction rules whose conclusions are accompanied by belief degrees, are ob-
tained by supervised learning from a training set. These rules are then exploited
by a basic inference engine: it fires only the rules with which the new observa-
tion to classify matches exactly. To introduce more flexibility, this engine was
extended to an approximate inference which allows to fire rules not too far from
the new observation. In this paper, we propose to use approximate reasoning to
generate new rules with widened premises: thus imprecision of the observations
are taken into account and problems due to the discretization of continuous at-
tributes are eased. The objective is then to exploit the new base of rules by a ba-
sic inference engine, easier to interpret. The proposed method was implemented
and experimental tests were carried out.

Keywords: Supervised learning, rules generation, approximate reasoning, in-
ference engine, imprecision and uncertainty management.

1 Introduction

Facing the increase of data amount recorded daily, the detection of both structures and
specific links between them, the organisation and the search of exploitable knowledge
have become a strategic stake for decision making and prediction task. This complex
problem of data mining has multiple aspects [10], [17]. We focus on one of them: super-
vised learning. In [4], [3], we have proposed a learning method from examples situated at
the junction of statistical methods and those based on Artificial Intelligence techniques.
Our method, SUCRAGE (SUpervised Classification by Rules Automatic GEneration) is
based on automatic generation of classification rules. Production rules IF premise THEN
conclusion are a mode of knowledge representation widely used in learning systems
because they ensure the transparency and the easy explanation of the classifier [5], [8].
Indeed, the construction of production rules using the knowledge and the know-how of
an expert is a very difficult task. The complexity and cost of such a knowledge acquisi-
tion have led to an important development of learning methods used for an automatic
knowledge extraction, and in particular for rules extraction [8], [5].

336 A. Borgi

The learning method SUCRAGE is based on a correlation search among the fea-
tures of the examples and on discretization of continuous attributes. Rules conclusions
are of the form «belonging to a class » and are uncertain. In the classification phase,
an inference engine exploits the base of rules to classify new observations and also
manages rules uncertainty. This reasoning that we called basic reasoning allows to
obtain conclusions, when the observed facts match exactly rules premises.

In this paper, we are interested in an other reasoning: approximate reasoning [16],
[8], [6]. It allows to introduce more flexibility and to overcome problems due to dis-
cretization. Such reasoning is closer to human reasoning than the basic one: human
inferences do not always require a perfect correspondence between facts or causes to
conclude.

In [2], we have proposed a context-oriented approximate reasoning. This reason-
ing, used as an inference mode, allows to manage imprecise knowledge as well as
rules uncertainty: according to distance between observations and premises, it com-
putes a neighborhood degree and associates a final confidence degree to rules conclu-
sions. This model is faithful to the classical scheme of Generalized Modus Ponens
[16]. In this paper, we propose to see approximate reasoning under another angle. The
originality of our approach lies in the use of approximate reasoning, not only as a
mode of inference, but to refine the learning. This reasoning allows to generate new
rules and to ease in this way problems due to discretization and imprecision of the
observations. The aim is that the new base of rules will then be exploited by a basic
inference engine more easy to interpret. In our model, approximate reasoning has then
no more vocation to be a method of inference allowing to fire certain rules but joins in
the process of learning itself. The software SUCRAGE was extended: new rules con-
struction through approximate reasoning was implemented. Applications of the ex-
tended version to benchmark problems are reported.

This paper is organized as follows. In section 2, the method SUCRAGE is de-
scribed. More precisely we describe the learning phase (rules generation) and the
classification phase. Only the basic inference engine is presented. In section 3, we
present the approximate reasoning used as an inference mode. Section 4 attempts to
explain the use of approximate reasoning to generate new classification rules and its
contribution to the process of learning. Tests and results obtained by computer simu-
lations with two benchmarks are provided in section 5. Finally, section 6 concludes
the study.

2 The Supervised Learning Method Sucrage

2.1 Rules Generation

In this section, we describe the learning phase of the supervised learning method
SUCRAGE. The training set contains examples described by numerical features de-
noted X1, ..., Xi, ..., Xp. These examples are labelled by the class to which they be-
long. The classes are denoted y1,y2,...,yC. The generated rules are of the type:

A1 and A2 and ... and Ak ⎯⎯→ y, α
where

 Approximate Reasoning to Learn Classification Rules 337

Ai: condition of the form Xj is in [a,b],
Xj: the jth vector component representing an observation,
[a,b]: interval issued from the discretization of the features variation domain
(here, it is the variation domain of the feature Xj),
y: a hypothesis about membership in a class,
α: a belief degree representing the uncertainty of the conclusion.

rg_0 rg_1 rg_2 rg_3 X4

X5

rg
_0

rg

_1
 r

g_
2

rg

_3

premise :
X4 is in rg_3 and X5 is in rg_2

rg_0 rg_1 rg_2 rg_3 X4

X5

rg
_0

rg

_1
 r

g_
2

rg

_3

premise :
X4 is in rg_3 and X5 is in rg_2

Fig. 1. A partition of the correlated features space

Our approach is multi-featured as the features that appear in rules premises are se-
lected in one piece. This selection is realized by linear correlation search among the
training set elements [4], [3]. So the first step consists in computing the correlation
matrix between the components of the training set vectors. Then to decide which
components are correlated, this matrix is thresholded (with a threshold denoted θ).
The idea is to detect privileged correlations between the features and to generate the
rules according to these correlations. According to Vernazza’s approach, we decide to
group in the same premises all components that are correlated [14].

Next step in building the rules is feature discretization. Among the non supervised
methods of discretization, the simplest one leads to M sub-ranges of equal width. This
method called the regular discretization is the one we retain for this study. The M
obtained sub-ranges are denoted rg_0, rg_1, ..., rg_(M-1), these values are totally
ordered.

Once the discretization done, condition parts of rules are then obtained by consid-
ering for each correlated components subset, a sub-interval (rg_i) for each component
in all possible combinations. Indeed the premises of the rules form a partition of the
correlated components space. Figure 1 illustrates such a partition in the case of two
correlated features (X4 and X5) and with a subdivision size M=4.

Each premise that we construct leads to the generation of C rules (C: number of
classes). The rules conclusions are of the form « belonging to a class » and are not
absolutely certain, that’s why each conclusion is accompanied by a belief degree α. In
this paper, we propose to represent the belief degrees by a classical probability esti-
mated on the training set [12], [3], [4].

338 A. Borgi

2.2 Basic Inference Engine

The rules were generated for the purpose of a further classification use. In classifica-
tion phase, the base of rules is exploited to classify new objects that don’t belong to
the training set. To achieve this goal, our approach consists in using a 0+ order infer-
ence engine. The inputs of this engine are the base of rules previously built and a
vector representing the object to classify. The inference engine associates then a class
to this vector.

We propose two reasoning models. The first one, called basic reasoning is pre-
sented in this section. The second one, the approximate reasoning, will be detailed in
section 3. The basic reasoning allows the inference engine to fire only the rules with
which the new observation components match exactly. The engine classifies each new
observation using the classical deduction reasoning. It has to manage the rules’ uncer-
tainty and take it into account within the inference dynamic. Uncertainty management
is done by computations on the belief degrees of the fired rules. Once the rules fired,
we have to compute a final belief degree associated with each class. For this we pro-
pose to use a triangular co-norm [7]: the final belief degree associated to each class is
the result of this co-norm applied on the probabilities of the fired rules that conclude
to this considered class. Experimental tests presented in this paper were realized with
the Zadeh co-norm (max). Finally the winner class associated with the new observa-
tion is the class for which the final belief degree is maximum.

3 Approximate Reasoning

Approximate reasoning, in a general way, makes reference to any reasoning which
treats imperfect knowledge. This imperfection has multiple facets: for instance the
knowledge can be vague, imprecise, or uncertain. In spite of such imperfections, ap-
proximate reasoning allows to treat this knowledge and to end in conclusions. In [8],
approximate reasoning concerns as well the imprecision and uncertainty representa-
tion as their treatment and propagation in a knowledge based system. The term ap-
proximate reasoning has however a particular meaning of a word introduced by Zadeh
in the field of Fuzzy Logic [16], [15]. In this frame, approximate reasoning corre-
sponds to Generalized Modus Ponens who is an extension of Modus Ponens in fuzzy
data. This definition of approximate reasoning is not contradictory to the first one
which is more general and concerns all the forms of imperfections.

The approximate reasoning which we introduce is situated in the intersection of
these two approaches. We are however more close to "fuzziers” as far as we remain
faithful to the Generalized Modus Ponens [16], but we adapt it to a symbolic frame
[4], [2], [6]. We propose a model of Approximate Reasoning which allows to associ-
ate a final degree of confidence to the conclusions (classes) on the basis of an impre-
cise correspondance between rules and observations. This reasoning does not fire only
the rules the premises of which are exactly verified by the new observation, but also
those who are not too much taken away from this observation. Thus, we are in the
situation described in figure 2.

 Approximate Reasoning to Learn Classification Rules 339

A1 and A2 and ... and An B with a belief degree α

A’1 is nearly A1
A’2 is nearly A2...

A’n is nearly An

B with a belief degree α’

uncertainty

imprecision

uncertainty

A1 and A2 and ... and An B with a belief degree α

A’1 is nearly A1
A’2 is nearly A2...

A’n is nearly An

B with a belief degree α’

uncertainty

imprecision

uncertainty

Fig. 2. Particular case of Generalized Modus Ponens

The consideration of observations close to rules premises allows to overflow
around these premises. More exactly, it allows to extend beyond around the intervals
stemming from the discretization and to ease so the problems of borders due to any
discretization. So that our approximate reasoning can become operational, it is neces-
sary to formalize first of all the notion of neighborhood. Then, it is necessary to model
the approximate inference, that is to determine the degree of the final conclusion (α’)
of the diagram shown on figure 2.

3.1 Proximity between Observation and Premise

In works about approximate reasoning, Zadeh [16] stresses the necessary introduction
of a distance in order to define neighbouring facts. In [13], a similarity degree be-
tween two objects is introduced. In our case, to define the notion of neighbourhood
we have defined two types of measure or distance [4], [2]. A distance that we call
local distance will measure the proximity of an observation element to a premise
element. These distances will then be aggregated to obtain a global distance between
the observation and the whole premise.

A Local Distance. We consider, by concern of clearness, the following rule:

X1 in rg_r1 and X2 in rg_r2 and... Xn in rg_rn → yt,α

which groups together in its premise the attributes X1, X2, ...,Xn. This rule does not
lose in generality: it can be obtained by renaming the attributes.

We note V=(v1,v2,...,vn) the elements of the observation concerned by the premise.
To compare V with the following premise: X1 is in rg_r1 and X2 is in rg_r2 and ... and
Xn is in rg_rn, we begin by making local comparisons between v1 and X1 is in rg_r1,
between v2 and X2 is in rg_r2 ... So we have to define the local distances d1, d2, ..., dn
of the following schema:

A1 and A2 and ... and An →B with a belief degree α
A’1 d1-distant of A1
A’2 d2-distant of A2
...
A’n dn-distant of An
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 B with a belief degree α’

340 A. Borgi

More precisely it comes to determine the following distances di: v1 is d1-distant
from rg_r1, …, vn is dn-distant from rg_rn where the distance is the formal translation
of the neighboring concept.

Rule premise (Ai) associates discrete values (rg_0, rg_1, ...,rg_(M-1)) to observa-
tion components. But observations (A’i or vi) have numerical values. In order to com-
pare them, we introduce a numerical-symbolic interface [4]. We split each interval
rg_k into M sub-intervals of equal range, denoted σ0, σ1, We thus have a finer
discretization, and we obtain M*M sub-intervals (σ0, σ1 ..., σM*M-1.). Figure 3 illus-
trates such sub-intervals obtained with M=3.

We can associate to each numerical value vi the sub-interval σt to which it belongs.
The distance di between vi and rg_ri is then defined as the number of sub-intervals of
type σ separating σt from rg_ri. Of course, di is 0 if vi is in rg_ri. Thus, we obtain the
distance vector D=(d1,d2,…,dn) associated to every pair (observation, premise) or
(observation, rule).

A Global Distance. In order to make approximate inferences, we want to aggregate the
different local distances di. The result of this aggregation is a global distance that we
note g-distance, and on which we wish to confer some properties [4]. One property
that we impose to that distance is to be very sensitive to little variations of neighbor-
ing facts. This global distance that measures distance between approximately equal
vectors can be insensitive when facts are very far from each other. This g-distance has
to either measure the proximity between two nearby facts, or indicate by a maximal
value, that they are not nearby. This is a proximity measure, and not a real distance.
This distance is represented by an integer in [0, M-1]. In order to take into account the
value dispersion, we do not use tools like min-max functions but we propose an ag-
gregation based on a “dispersion” function SD:

SD: [0..M-1] ⎯⎯→ IN

 k ⎯⎯→ SD(k) = ∑
=

−
n

i
kd

1

2
)i(

SD(k) allows, in a way similar to the variance, to measure the dispersal of the local
distances di around k. We have then defined a global distance g-dist as follows:

g-dist: [0..M×(M-1)]n ⎯⎯→ [0..M-1]

 (d1,d2, ...,dn) ⎯⎯→))]k(min(max[
1

0

1 SS D

M

k
D

−

=
−

The global distance is presented with more details in [4] and [2]. We have notably
proved that the proposed aggregated distance satisfies the above mentioned property.

We can notice that it is possible to have g-distance equal to 0, even if the distance
vector is not null. In other words, it is possible to have a global distance equal to 0 for
an observation that does not satisfy the considered rule.

3.2 Approximate Inference

The use of approximate inference supposes that a meta-knowledge exists in the sys-
tem and allows it to run. In our case the meta-knowledge gives the possibility to bind
imprecision (observation and premise of rule) to uncertainty (conclusion degree). This

 Approximate Reasoning to Learn Classification Rules 341

meta-knowledge has two complementary aspects: the first hypothesis says that a weak
difference between observation and premise induces that the conclusion part is not
significantly modified. For every rule, a stability area exists around the premise of the
rule. The second and stronger hypothesis says that if the distance between observation
and premise increases, then uncertainty of the conclusion increases too. A maximal
distance must give a maximal uncertainty (in our case, it corresponds to the minimal
belief degree, i.e. a probability equal to zero) [4].

The conclusion degree is weakened in accordance with the global distance. In our
model, belief degrees (α) associated with rules are numerical, so it is hoped to con-
serve a numerical final degree (α’) for the whole coherence. To compute the final
belief degree α’of a conclusion via the approximate reasoning, given the global dis-
tance d (symbolic) between the premises and the observation and α the belief degree
(numerical) of the conclusion of the fired rule, we propose the following function F :

F : [0,1] × [0..M-1] ⎯⎯→ [0,1]

 (α,d) ⎯⎯→)
1

1.(
−

−
M

dα

This formula includes the two aspects of the meta-knowledge hypothesis men-
tioned above. It is easy to observe that little imprecisions (in cases where d=0) do not
modify uncertainty. On the other hand, a maximal distance (d=M-1) induces a com-
plete uncertainty (α’=0). We note that we find back the basic reasoning in the limit
case d=0.

4 Approximate Reasoning to Learn New Rules

In this part, we present the use of approximate reasoning not as a mode of inference to
exploit rules in classification phase, but as a means to refine the learning. The use of
approximate reasoning during the learning phase consists in generating new rules the
premises of which are widened. The method consists in generating rules by using the
basic approach described in section 2 then to look "around" the rules to verify if we
cannot improve them or add better rules. The objective is then to exploit this base of
rules thanks to a basic inference engine by hoping to obtain results close to a basic
generation of rules exploited by an approximate engine.

For reasons of legibility and simplicity, we shall call the rules generation realized
by SUCRAGE in its initial version the basic generation. The generation of rules
completed by the construction of new rules via approximate reasoning will be called
approximate generation.

4.1 Method with a Constant Number of Rules

This approach can be summarized by: "from an observation situated near the rules
which we generated with the basic method of SUCRAGE, we verify if we cannot
widen every rule to a rule of better quality". This is made always by using the same
whole learning set.

342 A. Borgi

To consider that an observation O is near a rule R, we have to define a g-threshold,
it is the maximal value authorized by g-distance(O, R).

For every observation O near a rule R (the mother rule) and having the same conclu-
sion (class) as the rule R, we are going to build a new rule (the daughter rule Rdaughter):

- the premise of Rdaughter is that containing Premise(R) and O the most restrictive
possible and convex by using the ranges (rg_ri) and the sub-intervals of type σ,

- the class of the conclusion do not change,
- the belief degree of Rdaughter is recomputed on the whole training set according to

the new premise. This new assessment of the belief degree of the daughter rule built
through approximate reasoning allows integrating this reasoning into the learning
process.

The sentence "Premise containing Premise(R) and O the most restrictive possible
and convex by using the ranges (rg_ri) and the sub-intervals of type σ" means that to
create the new premise, we start from the ancient premise and we add to all the condi-
tions that O does not verify the intervals of type σ which would allow O to verify it.
Rdaughter contains in its premise the same attributes as the mother rule R but with wider
values. For instance, as shown in figure 3, in the case of a discretization with M=3, if
the given value Oi ∈σ4 and the condition is Xi is in rg_0 then the new condition will
be Xi is in rg_0 ∪ σ3 ∪ σ4 (by supposing naturally that the condition of threshold on
the global distance is verified).

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

rg_0 rg_1 rg_2

New condition

×
σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

rg_0 rg_1 rg_2

New condition

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

rg_0 rg_1 rg_2

New condition

×

Fig. 3. An example of construction of a new rule condition

In the construction procedure of a new rule which we presented, a couple (observa-
tion, rule) verifying certain properties gives birth to a new rule. Among the mother
rule and all the daughter rules we can generate, only the one who has the strongest
belief degree is kept. Thus the initial number of rules does not change.

4.2 Method with Addition of Rules

We try here to widen the method of generation of a new base of rules so that the best
rule is not the only one kept in the base. For that purpose, we use the "raw force" and
we add in the base of rules all the rules that we can generate from each: a rule can
then lead to several new rules and either as previously to a unique rule (that of
stronger degree). This method allows to create a wide base close to data but this base,
because of its size, becomes illegible as for interpretation by an expert. It becomes
then necessary to optimize the size of the base of rules [5], [11].

 Approximate Reasoning to Learn Classification Rules 343

5 Tests and Results

The system SUCRAGE that we initially developed allows the generation of rules by
the method presented in section 2.1 as well as their exploitation by an inference en-
gine. This engine uses a basic reasoning or approximate one [4], [2]. We completed
this system by a module of rules generation via the approximate reasoning. We tested
this new application on two learning bases stemming from the server of Irvine's Uni-
versity: those bases are Iris data and Wine data.

To compare the different results, we used the same test methods with the same pa-
rameters values for the classification system (size of subdivision M, correlation
threshold θ). We used a ten order cross-validation [9]. The obtained results are pre-
sented and analyzed in this part.

5.1 Results of the Method with a Constant Number of Rules

We present here the tests realized with the method of new rules construction via the
approximate reasoning according to the approach with a constant number of rules.
The first tests were made with g-threshold=0 or g-threshold=1 which seem the only
reasonable values. Values superior to 2 would throw a search which we could not
consider as near the rule. The analysis of the results and the emission of hypotheses to
explain them can be made by examining the shape of the generated rules. We distin-
guish two cases in function of g-threshold (0 or 1).

The case g-threshold=0 gives results (rates of good classification) almost identical
to the basic generation (followed by an exact inference), so they are almost identical
to results presented in column "Basic Generator, Basic Inference" of table 1. On the
tested data, there are only very few changes between rules generated basically and
approximately. This is mainly due to the following report: it is impossible, for a prem-
ise containing a number strictly lower than 3 attributes to have g-dist=0. All the rules
containing 2 attributes in their premise can not be improved.

Let us focus now on the case g-threshold=1. Table 1 presents the rates of good
classifications obtained with each of the three possible approaches:

- column « Approx. Gen.-1, Basic Inference »: rules were generated by SUCRAGE
then new rules were built via approximate reasoning, with a value of g-threshold=1.
The base of rules is then exploited by a basic inference engine.
- column « Basic Gen., Basic Inference »: rules were generated by SUCRAGE in its
initial version. The rules base is then exploited by a basic inference engine.
- column « Basic Gen., Approx. Inference »: rules were generated by SUCRAGE in
its initial version. The base of rules is then exploited by an approximate inference
engine. It is the results of this method that we hope to approach (even improve) by
using approximate reasoning to build new rules.

With Iris data, we can see that the results of the approximate generation are close
to those obtained with the approximate inference. Moreover, these results are very
similar to those obtained with the basic generator followed by basic reasoning. Thus,
it is not very interesting in view of the supplementary computations needed.

With the WINE data, the results are very interesting: approximate generation of
rules allows improving the case of a basic generation followed by an approximate
inference (a single case of identical results). There is also improvement with regard to
a basic generation followed by a basic inference.

344 A. Borgi

Table 1. Method with a constant number of rules

Method

Parameter

Approx.
Gen-1,
Basic
Inference

Basic
Gen.,
Basic
Inference

Basic
Gen.,
Approx.
Inference

IRIS data

M=3
θ=0.9

98.00 97.33 97.33

M=3
θ=0.8

96.67 95.33 96.67

M=5
θ=0.9

93.33 94.00 94.00

M=5
θ=0.8

90.67 90.67 93.33

WINE data

M=3
θ=0.9

88.75 88.75 88.75

M=3
θ=0.8

88.20 87.09 87.64

M=5
θ=0.9

92.68 90.92 91.50

M=5
θ=0.8

93.27 92.05 92.05

For g-threshold=1, the observation "around" the rules is not insufficient any more
here (case g-threshold=0) but can be too much: we sometimes witness the creation of
double rules. The observation near a rule can go up to another basic rule which was
already generated, it is then the strongest which is going to win. We can have here a
loss of information. The algorithm tends then to create an absorption of weak rules by
strong rules rather than an extension of the strong rules.

5.2 Results of the Method with Addition of Rules

Table 2 presents the results obtained with the second method of new rules generation
via the approximate reasoning: this time every new generated rule is added to the
initial base of rules. The column "Approx. Gen. Add., Basic Inference" of this table
contains the results obtained with this approach, the title of the last two columns is
unchanged in comparison with table 1. In addition, every cell contains the rate of
good classifications followed by the number of rules between brackets (for this
method the number of rules takes importance).

The analysis of these results shows that they are very correct at the level of good clas-
sifications rate: with the approximate generator with addition the rates of good classifica-
tions are generally improved or maintained in comparison with the basic generator fol-
lowed by a basic inference as well as the basic generator followed by an approximate
inference. With the WINE data, two cases of light depreciation are to be noted.

 Approximate Reasoning to Learn Classification Rules 345

Table 2. Method with addition of rules

Method

Parameter

Approx.
Gen. Add.,
Basic
Inference

Basic
Gen.,
Basic
Inference

Basic
Gen.,
Approx.
Inference

IRIS data

M=3
θ=0.9

97.33
(61.4)

97.33
(23.5)

97.33
(23,5)

M=3
θ=0.8

96.67
(123.6)

95.33
(21.5)

96.67
(21.5)

M=5
θ=0.9

95.33
(119.1)

94.00
(37.7)

94.00
(37.7)

M=5
θ=0.8

94.67
(303.9)

90.67
(39.7)

93.33
(39.7)

WINE data

M=3
θ=0.9

90.45
(245.2)

88.75
(96.7)

88.75
(96.7)

M=3
θ=0.8

89.93
(214)

87.09
(97.9)

87.64
(97.9)

M=5
θ=0.9

89.35
(388.2)

90.92
(152.4)

91.50
(152.4)

M=5
θ=0.8

91.57
(343.8)

92.05
(152.2)

92.05
(152.2)

On the other hand, the number of generated rules increases very widely. Moreover,
it is evident that we generate many useless rules, even harmful rules entailing a de-
cline of the results. A work to reduce the number of rules becomes here indispensable
as well to eliminate the harmful rules that for reasons of legibility of the base of rules
[11], [5]. A work was realized in this sense: we used Genetic Algorithms to reduce the
size of the base of rules without losing too much performance. This approach tested in
the case of basic generation of rules led to very interesting experimental results [1].

6 Conclusions

The supervised learning method SUCRAGE allows to generate classification rules then
to exploit them by an inference engine which implements a basic reasoning or an ap-
proximate reasoning. The originality of our approach lies in the use of approximate rea-
soning to refine the learning: this reasoning is not only considered any more as a second
running mode of the inference engine but is considered as a continuation of the learning
phase. Approximate reasoning allows to generate new wider and more general rules.
Thus imprecision of the observations are taken into account and problems due to the
discretization of continuous attributes are eased. This process of learning refinement
allows to adapt and to improve the discretization. The initial discretization is regular, it is

346 A. Borgi

not supervised. It becomes, via the approximate reasoning, supervised, as far as the ob-
servations are taken into account to estimate their adequacy to rules and as far as the
belief degrees of these new rules are then computed on the whole training set. Moreover
the interest of this approximate generation is that the new base of rules is then exploited
by a basic inference engine, easier to interpret. Thus approximate reasoning complexity is
moved from the classification phase (a step that has to be repeated) to the learning phase
(a step which is done once). The realized tests lead to satisfactory results as far as they
are close to those obtained with a basic generation of rules exploited by an approximate
inference engine.

The continuation of the work will focus on the first method of new rules generation
(with constant number of rules) to make it closer to what takes place during approxi-
mate inference. The search for other forms of g-distance can turn out useful notably to
be able to obtain results of generation between the g-threshold value 0 (where we
remain too close to the observation) and the g-threshold value 1 (where we go away
too many "surroundings" of the observation). The second method, which enriches the
base of rules with all the new rules, is penalized by the final size of the obtained base.
An interesting perspective is to bend over the manners to reduce the number of rules
without losing too much classification performance.

References

1. Borgi, A.: Différentes méthodes pour optimiser le nombre de règles de classification dans
SUCRAGE. In: 3rd Int. Conf. Sciences of Electronic, Technologies of Information and Te-
lecom. SETIT 2005, Tunisia, p. 11 (2005)

2. Borgi, A., Akdag, H.: Apprentissage supervisé et raisonnement approximatif, l’hypothèse
des imperfections. Revue d’Intelligence Artificielle, Editions Hermès, 15(1), 55–85
(2001)

3. Borgi, A., Akdag, H.: Knowledge based supervised fuzzy-classification: An application to
image processing. Annals of Mathematics and Artificial Intelligence 32, 67–86 (2001)

4. Borgi, A.: Apprentissage supervisé par génération de règles: le système SUCRAGE, Thèse
de doctorat (PhD thesis), Université Paris VI (1999)

5. Duch, W., Setiono, R., Zurada, J.M.: Computational Intelligence Methods for Rule-Based
Data Understanding. Proceedings of the IEEE 92, 5 (2004)

6. El-Sayed, M., Pacholczyk, D.: Towards a Symbolic Interpretation of Approximate Reaso-
ning. Electronic Notes in Theoretical Computer Science, vol. 82(4), pp. 1–12 (2003)

7. Gupta, M.M., Qi, J.: Connectives (And, Or, Not) and T-Operators in Fuzzy Reasoning.
Conditional Inference and Logic for Intelligent Systems, 211–233 (1991)

8. Haton, J.-P., Bouzid, N., Charpillet, F., Haton, M., Lâasri, B., Lâasri, H., Marquis, P.,
Mondot, T., Napoli, A.: Le raisonnement en intelligence artificielle. InterEditions (1991)

9. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Mo-
del Selection. In: Proc. of the Fourteenth International Joint Conference on Artificial Intel-
ligence, vol. 2 (1995)

10. Michalski, R.S., Ryszard, S.: A theory and methodology of inductive learning. Machine
Learning: An Artificial Intelligence Approach I, 83–134 (1983)

11. Nozaki, K., Ishibuchi, H., Tanaka, H.: Selecting Fuzzy Rules with Forgetting in Fuzzy
Classification Systems. In: Proc. 3rd IEEE. Conf. Fuzzy Systems, vol. 1 (1994)

 Approximate Reasoning to Learn Classification Rules 347

12. Pearl, J.: Numerical Uncertainty In Expert Systems. In: Shafer, Pearl (eds.) Readings in
Uncertain Reasoning. Morgan Kaufman publishers, California (1990)

13. Ruspini, E.: On the semantics of fuzzy logic. International Journal of Approximate Reaso-
ning 5 (1991)

14. Vernazza, G.: Image Classification By Extended Certainty Factors. Pattern Recogni-
tion 26(11), 1683–1694 (1993)

15. Yager, R.R.: Approximate reasoning and conflict resolution. International Journal of Ap-
proximate Reasoning 25, 15–42 (2000)

16. Zadeh, L.A.: A Theory of Approximate Reasoning. Machine Intelligence 9, 149–194
(1979)

17. Zhou, Z.H.: Three perspectives of data mining. Artificial Intelligence 143, 139–146 (2003)

Combining Metaheuristics for the Job Shop Scheduling
Problem with Sequence Dependent Setup Times

Miguel A. González, Marı́a R. Sierra, Camino R. Vela,
Ramiro Varela, and Jorge Puente

Artificial Intelligence Center, Dept. of Computing, University of Oviedo
Campus de Viesques, 33271 Gijón, Spain

raist@telecable.es
{mariasierra,camino,ramiro,puente}@aic.uniovi.es

Abstract. The Job Shop Scheduling (JSS) is a hard problem that has interested
to researchers in various fields such as Operations Research and Artificial Intel-
ligence during the last decades. Due to its high complexity, only small instances
can be solved by exact methods, while instances with a size of practical interest
should be solved by means of approximate methods guided by heuristic knowl-
edge. In this paper we confront the Job Shop Scheduling with Sequence Depen-
dent Setup Times (SDJSS). The SDJSS problem models many real situations
better than the JSS. Our approach consists in extending a genetic algorithm and
a local search method that demonstrated to be efficient in solving the JSS prob-
lem. We report results from an experimental study showing that the proposed
approaches are more efficient than other genetic algorithm proposed in the liter-
ature, and that it is quite competitive with some of the state-of-the-art approaches.

Keywords: Metaheuristics, Genetic Algorithms, Local Search, Job Shop
Scheduling.

1 Introduction

The Job Shop Scheduling Problem with Sequence Dependent Setup Times (SDJSS) is
a variant of the classic Job Shop Scheduling Problem (JSS) in which a setup operation
on a machine is required when the machine switches between two jobs. This way the
SDJSS models many real situations better than the JSS. The SDJSS has interested
to a number of researchers, so we can find a number of approaches in the literature,
many of which try to extend solutions that were successful to the classic JSS problem.
This is the case, for example, of the branch and bound algorithm proposed by Brucker
and Thiele in [1], which is an extension of the well-known algorithms proposed in [2],
[3] and [4], and the genetic algorithm proposed by Cheung and Zhou in [5], which is
also an extension of a genetic algorithm for the JSS. Also, in [6] a neighborhood search
with heuristic repairing is proposed that it is an extension of the local search methods
for the JSS.

In this paper we apply a similar methodological approach and extend a genetic algo-
rithm and a local search method that we have applied previously to the JSS problem.
The genetic algorithm was designed by combining ideas taken from the literature such

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 348–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combining Metaheuristics for the Job Shop Scheduling Problem 349

as for example the well-known G&T algorithm proposed by Giffler and Thomson in
[7], the codification schema proposed by Bierwirth in [8] and the local search methods
developed by various researchers, for example Dell’ Amico and Trubian in [9], Nowicki
and Smutnicki in [10] or Mattfeld in [11]. In [12] we reported results from an experi-
mental study over a set of selected problems showing that the genetic algorithm is quite
competitive with the most efficient methods for the JSS problem.

In order to extend the algorithm to the SDJSS problem, we have firstly extended the
decoding algorithm, which is based on the G&T algorithm. Furthermore, in our local
search method, we have adapted the neighborhood structure termed N1 in the literature
to obtain a neighborhood that we have termed NS

1 .
The experimental study was conducted over the set of 45 problem instances proposed

by Cheung and Zhou in [5] and also over the set of 15 instances proposed by Brucker
and Thiele in [1]. We have evaluated the genetic algorithm alone and then in conjunction
with local search. The results show that the proposed genetic algorithm is more efficient
than the genetic algorithm proposed in [5] and that the genetic algorithm combined with
local search improves with respect to the raw genetic algorithm when both of them run
during similar amount of time. Moreover, the efficiency of the genetic algorithm is at
least comparable to the exact approaches proposed in [1] and [13].

The rest of the paper is organized as it follows. In section 2 we formulate the SDJSS
problem. In section 3 we outline the genetic algorithm for the SDJSS. In section
4 we describe the extended local search method. Section 5 reports results from the
experimental study. Finally, in section 6 we summarize the main conclusions.

2 Problem Formulation

We start by defining the JSS problem. The classic JSS problem requires scheduling
a set of N jobs J1, . . . , JN on a set of M physical resources or machines R1, . . . , RM .
Each job Ji consists of a set of tasks or operations {θi1, . . . , θiM} to be sequentially
scheduled. Each task θil having a single resource requirement, a fixed duration pθil and
a start time stθil whose value should be determined.

The JSS has two binary constraints: precedence constraints and capacity constraints.
Precedence constraints, defined by the sequential routings of the tasks within a job,
translate into linear inequalities of the type: stθil + pθil ≤ stθi(l+1) (i.e. θil before
θi(l+1)). Capacity constraints that restrict the use of each resource to only one task at a
time translate into disjunctive constraints of the form: stθil + pθil ≤ stθjk ∨ stθjk +
pθjk ≤ stθil. Where θil and θjk are operations requiring the same machine. The ob-
jective is to come up with a feasible schedule such that the completion time, i.e. the
makespan, is minimized.

In the sequel a problem instance will be represented by a directed graph G = (V, A∪
E). Each node in the set V represents a operation of the problem, with the exception of
the dummy nodes start and end, which represent operations with processing time 0.
The arcs of the set A are called conjunctive arcs and represent precedence constraints
and the arcs of set E are called disjunctive arcs and represent capacity constraints.
Set E is partitioned into subsets Ei with E = ∪i=1,...,MEi. Subset Ei corresponds
to resource Ri and includes an arc (v, w) for each pair of operations requiring that

350 M.A. González et al.

θ11 R1 θ12 R2 θ13 R3
4 3

θ21 R1 θ22 R3 θ23 R2
3 4

θ31 R2 θ32R1 θ33 R3

3 3

end

2+1

3

3

start

0

1

1

3+2
4+1

3+2 3+2

3+1 3+2

3+1

4+1

1

Fig. 1. A feasible schedule to a problem with 3 jobs and 3 machines. Bold face arcs show a critical
path whose length, i.e. the makespan, is 22.

resource. The arcs are weighed with the processing time of the operation at the source
node. The dummy operation start is connected to the first operation of each job; and
the last operation of each job is connected to the node end.

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs = (V, A∪H),
where H = ∪i=1..MHi, Hi being a hamiltonian selection of Ei. Therefore, finding out
a solution can be reduced to discovering compatible hamiltonian selections, i.e. order-
ings for the operations requiring the same resource or partial schedules, that translate
into a solution graph Gs without cycles. The makespan of the schedule is the cost of a
critical path. A critical path is a longest path from node start to node end. The critical
path is naturally decomposed into subsequences B1, . . . , Br called critical blocks. A
critical block is a maximal subsequence of operations of a critical path requiring the
same machine.

In the SDJSS, after an operation v of a job leaves machine m and before entering
an operation w of another job on the same machine, a setup operation is required with
duration Sm

vw. The setup operation can be started as soon as operation v leaves the ma-
chine m, hence possibly in parallel with the operation preceding w in its job sequence.
The setup time Sm

vw is added to the processing time of operation v to obtain the cost of
each disjunctive arc (v, w). Sm

0v is the setup time of machine m if v is the first operation
scheduled on m and Sm

v0 is the cleaning time of machine m if v is the last operation
scheduled on m.

Figure 1 shows a feasible solution to a problem with 3 jobs and 3 machines. Dotted
arcs represent the elements of set E included in the solution, while conjunctive arcs are
represented by continuous arrows.

3 Genetic Algorithm for the SDJSS Problem

The JSS is a paradigm of constraint satisfaction problems and was confronted by many
heuristic techniques. In particular genetic algorithms [8],[11],[14],[12] are a promising
approach due to their ability to be combined with other techniques such as tabu search
and simulated annealing. Moreover genetic algorithms allow for exploiting any kind

Combining Metaheuristics for the Job Shop Scheduling Problem 351

Algorithm 1. Conventional Genetic Algorithm.
input: a JSS problem P
output: a schedule H for problem P
1. Generate the Initial Population;
2. Evaluate the Population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the Crossover and Mutation operators to the chromosomes selected at step 3. to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the Acceptation criterion to the set of chromosomes selected at step 3. together
with the chromosomes generated at step 4.;

end while
7. Return the schedule from the best chromosome evaluated so far;

of heuristic knowledge from the problem domain. In doing so, genetic algorithms are
actually competitive with the most efficient methods for JSS.

As mentioned above, in this paper we consider a conventional genetic algorithm for
tackling the JSS and extend it to the SDJSS. This requires mainly the adaptation of
the decoding algorithm. Additionally we consider a local search method for the JSS
and adapt it to the SDJSS.

Algorithm 1 shows the structure of the genetic algorithm we have considered. In the
first step the initial population is generated and evaluated. Then the genetic algorithm
iterates over a number of steps or generations. In each iteration a new generation is
built from the previous one by applying the genetic operators of selection, crossover,
mutation and acceptation. In principle, these four operators can be implemented in a
variety of ways and are independent each one to the others. However in practice all
of them should be chosen considering their effect on the remaining ones in order to
get a successful convergence. The approach taken in this work is the following. In the
selection phase all chromosomes are grouped into pairs, and then each one of these
pairs is mated and mutated accordingly to the corresponding probabilities to obtain two
offsprings. Finally a tournament selection is done among each pair of parents and their
offsprings.

To codify chromosomes we have chosen permutations with repetition proposed by
C. Bierwirth in [8]. In this scheme a chromosome is a permutation of the set of oper-
ations, each one being represented by its job number. This way a job number appears
within a chromosome as many times as the number of operations of its job. For exam-
ple, the chromosome (2 1 1 3 2 3 1 2 3) actually represents the permutation of opera-
tions (θ21 θ11 θ12 θ31 θ22 θ32 θ13 θ23 θ33). This permutation should be understood as ex-
pressing partial schedules for every set of operations requiring the same machine. This
codification presents a number of interesting characteristics; for example, it is easy to
evaluate with different algorithms and allows for efficient genetic operators. In [15] this
codification is compared with other permutation based codifications and demonstrated
to be the best one for the JSS problem over a set of 12 selected problem instances
of common use. For chromosome mating we have considered the Generalized Order

352 M.A. González et al.

Crossover (GOX) that works as it is shown in the following example. Let us consider
that the two following chromosomes are selected as parents for crossover

Parent1 (1 2 3 3 2 1 1 3 2) Parent2 (3 3 2 3 1 1 2 2 1)

Firstly, a substring is selected from Parent1 and inserted in the Offspring at the same
position as in this parent. Then the remaining positions of the Offspring are completed
with genes from Parent2 after having removed the genes selected from Parent1. If the
selected substring from Parent1 is the one marked with underlined characters, the re-
sulting Offspring is

Offspring (3 2 3 3 2 1 1 1 2).

By doing so, GOX preserves the order and position of the selected substring from
Parent1 and the relative order of the remaining genes from Parent2. The mutation op-
erator simply selects and swaps two genes at random. In practice the mutation would
not actually be necessary due to the GOX operator has an implicit mutation effect. For
example the second 3 from Parent1 is now the third one in the Offspring.

3.1 Decoding Algorithm

As decoding algorithm we have chosen the well-known G&T algorithm proposed by
Giffler and Thomson in [7] for the JSS and then we have made a natural extension for
the SDJSS. The G&T algorithm is an active schedule builder. A schedule is active
if one operation must be delayed when you want another one to start earlier. Active
schedules are good in average and, what is most important, it can be proved that the
space of active schedules contains at least an optimal one, that is, the set of active
schedules is dominant. For these reasons it is worth to restrict the search to this space.
Moreover, the G&T algorithm is complete for the JSS problem. Algorithm 2 shows
the G&T algorithm for the JSS.

In order to adapt the G&T algorithm for the SDJSS we consider an extension
termed EG&T . EG&T can be derived from the algorithm EGTA1 developed by
Ovacik and Uzsoy in [16], by simply taking into account the setup times in Algorithm
2. So, the step 4 of Algorithm 2 is exchanged by

4. Remove from B every operation θ that stθ ≥ stθ′ + pθ′ + SR
θ′θ for any θ′ ∈ B;

In Algorithm 2, stθ refers to the maximum completion time of the last scheduled op-
eration on the machine required by operation θ and the preceding operation to θ in its
job. Hence the algorithm can be adapted to the SDJSS problem by considering stθ as
the maximum completion time of the preceding operation in the job and the completion
time of the last scheduled operation in the machine plus the corresponding setup time.
It is easy to demonstrate that EG&T is not complete. In [17] two more extensions of
the G&T schedule generation scheme are proposed, one of them is not complete either,
and the other is complete but it is very time consuming due to it needs to do back-
tracking. In any case, the lack of completeness of a decoding algorithm is not a serious
problem in the framework of GAs due to a GA itself is not complete. Moreover, the
local search schema outlined in the next section gives to any chromosome the chance
of being reached, so in any way the lack of completeness of the decoding algorithm is
compensated.

Combining Metaheuristics for the Job Shop Scheduling Problem 353

Algorithm 2. The decoding Giffler and Thomson algorithm for the JSS problem.
input: a chromosome C and a problem P
output: the schedule H represented by chromosome C for problem P
1. A = set containing the first operation of each job;
while A 	= ∅ do

2. Determine the operation θ′ ∈ A with the earliest completion time if scheduled in the
current state, that is stθ′ + pθ′ ≤ stθ + pθ, ∀θ ∈ A;
3. Let R be the machine required by θ′, and B the subset of A whose operations require R;
4. Remove from B every operation that cannot start at a time earlier than stθ′ + pθ′;
5. Select θ∗ ∈ B so that it is the leftmost operation of B in the chromosome sequence;
6. Schedule θ∗ as early as possible to build the partial schedule corresponding to the next
state;
7. Remove θ∗ from A and insert the succeeding operation of θ∗ in set A if θ∗ is not the last
operation of its job;

end while
8. return the built schedule;

4 Local Search

Conventional genetic algorithms, like the one described in the previous section, of-
ten produce moderate results. However meaningful improvements can be obtained by
means of hybridization with other methods. One of such techniques is local search, in
this case the genetic algorithm is called a memetic algorithm. Hybridization of a genetic
algorithm with local search is carried out by applying the local search algorithm to ev-
ery chromosome just after this chromosome is generated, instead of simply applying
the Algorithm 2 as it is done in the simple genetic algorithm. Algorithm 3 shows the
typical strategy of a local search.

Roughly speaking local search is implemented by defining a neighborhood of each
point in the search space as the set of chromosomes reachable by a given transformation
rule. Then a chromosome is replaced in the population by one of its neighbors, if any
of them satisfies the acceptation criterion. The local search from a given point com-
pletes either after a number of iterations or when no neighbor satisfies the acceptation
criterion.

In this paper we consider the neighborhood structure proposed by Nowicki and
Smutnicki in [10], which is termed N1 by D. Mattfeld in [11], for the JSS. As other
strategies, N1 relies on the concepts of critical path and critical block. It considers ev-
ery critical block of a critical path and made a number of moves on the operations of
each block. After a move inside a block, the feasibility must be tested. Since an exact
procedure is computationally prohibitive, the feasibility is estimated by an approximate
algorithm proposed by Dell’ Amico and Trubian in [9]. This estimation ensures fea-
sibility at the expense of omitting a few feasible solutions. In [11] the transformation
rules of N1 are defined as follows.

Definition 1. (N1) Given a schedule H with partial schedules Hi for each machine
Ri, 1 ≤ i ≤ M , the neighborhood N1(H) consist of all schedules derived from H by
reversing one arc (v, w) of the critical path with (v, w) ∈ Hi. At least one of v and w is

354 M.A. González et al.

Algorithm 3. The Local Search Algorithm.
input: a chromosome C and a JSS problem P
output: a (hopefully) improved chromosome
1. Evaluate chromosome C (Algorithm 2) to obtain schedule H ;
while No termination criterion is satisfied do

2. Generate the neighborhood of H with some method N , N(H);
3. Select H ′ ∈ N(H) with the selection criterion;
4. Replace H by H ′ if the acceptation criterion holds;

end while
5. Rebuild chromosome C from schedule H ;
6. return chromosome C;

either the first or the last member of a block. For the first block only v and w at the end
of the block are considered whereas for the last block only v and w at the beginning of
the block must be checked.

The selection strategy of a neighbor and the acceptation criterion are based on a
makespan estimation, which is done in constant time as it is also described in [9],
instead of calculating the exact makespan of each neighbor. The estimation provides
a lower bound of the makespan. The selected neighbor is the one with the lowest
makespan estimation whenever this value is lower than the makespan of the cur-
rent chromosome. Notice that this strategy is not steepest descendent because the exact
makespan of selected neighbor is not always better than the makespan of the current
solution. We have done this choice in the classic JSS problem due to it produces better
results than a strict steepest descent gradient method. [12].

The Algorithm stops either after a number of iterations or when the estimated
makespan of selected neighbor is larger than the makespan of the current chromo-
some.

This neighborhood relies on the fact that, for the JSS problem, reversing an arc of
the critical path always maintains feasibility. Moreover, the only possibility to obtain
some improvement by reversing an arc is that the reversed arc is either the first or the
last of a critical block.

However, things are not the same for SDJSS problem due to the differences in
the setup times. As can we see in [6], feasibility is not guaranteed when reversing an
arc of the critical path, and reversing an arc inside a block could lead to an improving
schedule. The following results give sufficient conditions of no-improving when an arc
is reversed in a solution H of the SDJSS problem. In the setup times the machine is
omitted for simplicity due to all of them refers to the same machine.

Theorem 1. Let H be a schedule and (v, w) an arc that is not in a critical block.
Then reversing the arc (v, w) does not produce any improvement even if the resulting
schedule is feasible.

Theorem 2. Let H be a schedule and (v, w) an arc inside a critical block, that is
there exist arcs (x, v) and (w, y) belonging to the same block. Even if the schedule H ′

Combining Metaheuristics for the Job Shop Scheduling Problem 355

obtained from H by reversing the arc (v, w) is feasible, H ′ is not better than H if the
following condition holds

Sxw + Swv + Svy ≥ Sxv + Svw + Swy (1)

Theorem 3. Let H be a schedule and (v, w) an arc in a critical path so that v is the
first operation of the first critical block and z is the successor of w in the critical path
and Mw = Mz . Even if reversing the arc (v, w) leaves to a feasible schedule, there is
no improvement if the following condition holds

S0w + Swv + Svz ≥ S0v + Svw + Swz (2)

Analogous, we can formulate a similar result if w is the last operation of the last critical
block.

Hence we can finally define the neighborhood strategy for the SDJSS problem as it
follows

Definition 2. (NS
1) Given a schedule H , the neighborhood NS

1 (H) consist of all
schedules derived from H by reversing one arc (v, w) of the critical path provided
that none of the conditions given in previous theorems 1, 2 and 3 hold.

4.1 Feasibility Checking

Regarding feasibility, for the SDJSS it is always required to check it after reversing an
arc. As usual, we assume that the triangular inequality holds, what is quite reasonable in
actual production plans, that is for any operations u,v and w requiring the same machine

Suw ≤ Suv + Svw (3)

Then the following is a necessary condition for no-feasibility after reversing the arc
(v, w).

Theorem 4. Let H be a schedule and (v, w) an arc in a critical path, PJw the opera-
tion preceding w in its job and SJv the successor of v in its job. Then if reversing the
arc (v, w) produces a cycle in the solution graph, the following condition holds

stPJw > stSJv + duSJv + Smin (4)

where

Smin = min{Skl/(k, l) ∈ E, Jk = Jv}

and Jk is the job of operation k.

Therefore the feasibility estimation is efficient at the cost of discarding some feasible
neighbor.

356 M.A. González et al.

4.2 Makespan Estimation

For makespan estimation after reversing an arc, we have also extended the method
proposed by Taillard in [18] for the JSS. This method was used also by Dell’Amico
and Trubian in [9] and by Mattfeld in [11]. This method requires calculating heads and
tails. The head rv of an operation v is the cost of the longest path from node start to
node v in the solution graph, i.e. is the value of stv. The tail qv is defined so as the value
qv + pv is the cost of the longest path from node v to node end.

For every node v, the value rv + pv + qv is the length of the longest path from
node start to node end trough node v, and hence it is a lower bound of the makespan.
Moreover, it is the makespan if node v belongs to the critical path. So, we can get a
lower bound of the new schedule by calculating rv + pv + qv after reversing (v, w).

Let us denote by PMv and SMv the predecessor and successor nodes of v respec-
tively on the machine sequence in a schedule. Let nodes x and z be PMv and SMw

respectively in schedule H . Let us note that in H ′ nodes x and z are PMw and SMv

respectively. Then the new heads and tails of operations v and w after reversing the arc
(v, w) can be calculated as the following

r′w = max(rx + px + Sxw, rPJw + pPJw)

r′v = max(r′w + pw + Swv, rPJv + pPJv)

q′v = max(qz + pz + Svz, qSJv + pSJv)

q′w = max(q′v + pv + Svw, qSJw + pSJw)

From these new values of heads and tails the makespan of H ′ can be estimated by

C′
max = max(r′v + pv + q′v, r

′
w + pw + q′w)

which is actually a lower bound of the new makespan. This way, we can get an effi-
cient makespan estimation of schedule H ′ at the risk of discarding some improving
schedule.

5 Experimental Study

For experimental study we have used the set of problems proposed by Cheung and Zhou
in [5] and also the benchmark instances taken from Brucker and Thiele [1]. The first one
is a set of 45 instances with sizes (given by the number of jobs and number of machines
N ×M) 10×10, 10×20 and 20×20, which is organized into 3 types. Instances of type
1 have processing times and setup times uniformly distributed in (10,50); instances of
type 2 have processing times in (10,50) and setup times in (50,99); and instances of type
3 have processing times in (50,99) and setup times in (10,50). Table 1 shows the results
from the genetic algorithm termed GA SPTS reported in [5]. The data are grouped
for sizes and types and values reported are averaged for each group. This algorithm
was coded in FORTRAN and run on PC 486/66. The computation time with problem
sizes 10 × 10, 10 × 20 and 20 × 20 are about 16, 30 and 70 minutes respectively. Each

Combining Metaheuristics for the Job Shop Scheduling Problem 357

Table 1. Results from the GA SPTS

ZRD Size Type Best Avg StDev
Instance N × M

1-5 10 × 10 1 835,4 864,2 21,46
6-10 10 × 10 2 1323,0 1349,6 21,00

11-15 10 × 10 3 1524,6 1556,0 35,44
16-20 20 × 10 1 1339,4 1377,0 25,32
21-25 20 × 10 2 2327,2 2375,8 46,26
26-30 20 × 10 3 2426,6 2526,2 75,90
31-35 20 × 20 1 1787,4 1849,4 57,78
36-40 20 × 20 2 2859,4 2982,0 93,92
41-45 20 × 20 3 3197,8 3309,6 121,52

Table 2. Results from the GA EG&T

ZRD Size Type Best Avg StDev
Instances N × M

1-5 10 × 10 1 785,0 803,0 8,76
6-10 10 × 10 2 1282,0 1300,2 9,82

11-15 10 × 10 3 1434,6 1455,4 12,87
16-20 20 × 10 1 1285,8 1323,0 15,38
21-25 20 × 10 2 2229,6 2278,2 22,24
26-30 20 × 10 3 2330,4 2385,8 23,91
31-35 20 × 20 1 1631,6 1680,4 17,99
36-40 20 × 20 2 2678,0 2727,8 23,60
41-45 20 × 20 3 3052,0 3119,6 29,33

Table 3. Results from the GA EG&T LS

ZRD Size Type Best Avg StDev
Instances N × M

1-5 10 × 10 1 778,6 788,5 6,70
6-10 10 × 10 2 1270,0 1290,4 9,16

11-15 10 × 10 3 1433,8 1439,8 6,71
16-20 20 × 10 1 1230,2 1255,5 12,74
21-25 20 × 10 2 2178,4 2216,8 18,61
26-30 20 × 10 3 2235,2 2274,0 19,32
31-35 20 × 20 1 1590,0 1619,8 15,90
36-40 20 × 20 2 2610,2 2668,0 27,48
41-45 20 × 20 3 2926,0 2982,2 26,32

algorithm run was stopped at the end of the 2000th generation and tried 10 times for
each instance.

Tables 2 and 3 reports the results reached by the genetic algorithm alone and the
genetic algorithm with local search, termed GA EG&T and GA EG&T LS respec-
tively, proposed in this work. In the first case the genetic algorithm was parameterized

358 M.A. González et al.

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 0 5 10 15 20 25 30 35 40 45

 GA_EG&T / GA_EG&T_LS

Fig. 2. Comparison of the raw genetic algorithm with the memetic algorithm. The graphic shows
for each problem the quotient of the mean makespan of the best solutions reached in all 30 trials
by the raw GA and the GA with local search.

with a population of 100 chromosomes, a number of 140 generations, crossover proba-
bility of 0.7, and mutation probability of 0.2. For the experiments combining the genetic
algorithm with local search, we have parameterized the genetic algorithms with 50 chro-
mosomes in the population and 50 generations in order to have similar running times.

The rest of the parameters remain as in previous experiments. The genetic algorithm
was run 30 times and reported the values of the best solution reached, the average of the
best solutions of the 30 runs and the standard deviation. The machine was a Pentium IV
at 1.7 Ghz. and the computation time varied from about 1 sec. for the smaller instances
to about 10 sec. for the larger ones. As we can observe both algorithms improved the
results obtained by the GA SPTS. Moreover algorithm GA EG&T LS has outper-
formed GA EG&T . Figure 2 shows the relative improvement of GA EG&T LS over
GA EG&T in all problems. The improvement is clear in almost all cases. Regarding
the benchmark from Brucker and Thiele [1], these instances are defined from the clas-
sical JSS instances, proposed by Lawrence [19], by introducing setup times. There
are 15 instances named t2 ps01 to t2 ps15. Instances t2 ps01 to t2 ps05 are of type
10 × 5 (small instances). Instances t2 ps06 to t2 ps10 are of type 15 × 5 (medium
instances). Instances t2 ps11 to t2 ps15 are of type 20 × 5 (large instances). Table 4
shows results from two state-of-the-art methods: the branch and bound algorithms pro-
posed by Brucker and Thiele [1] (denoted as BT 96) and Artigues et al. in [13] (denoted
as ABF04). In the results reported in [1] and [13] the target machine was Sun 4/20 sta-
tion and Pentium IV at 2.0 GHz. in both cases the time limit for the experiments was
7200 sec. In this case, our memetic algorithm was parameterized as the following: pop-
ulation size = 100 for small and medium instances and 200 for larger instances, and the
number of generations has been 100 for small instances, 200 for medium instances, and
400 for larger instances. The rest of the parameters remain as in previous experiments.
We run the algorithm 30 times for each instance, and the computation time for the larger
instances was 30 sec. for each run, i.e. 900 sec. of running time for each instance.

Combining Metaheuristics for the Job Shop Scheduling Problem 359

Table 4. Comparison between BT96, ABF04 and GA EG&T LS

Problem Size BT96 ABF04 GA EG&T LS
Instance N × M

t2 ps01 10 × 5 798 798 798
t2 ps02 10 × 5 784 784 784
t2 ps03 10 × 5 749 749 749
t2 ps04 10 × 5 730 730 730
t2 ps05 10 × 5 691 691 693
t2 ps06 15 × 5 1056 1026 1026
t2 ps07 15 × 5 1087 970 970
t2 ps08 15 × 5 1096 1002 975
t2 ps09 15 × 5 1119 1060 1060
t2 ps05 15 × 5 1058 1018 1018
t2 ps06 20 × 5 1658 - 1450
t2 ps07 20 × 5 1528 1319 1347
t2 ps08 20 × 5 1549 1439 1431
t2 ps09 20 × 5 1592 - 1532
t2 ps05 20 × 5 1744 - 1523

values in bold are optimal

As we can observe, GA EG&T LS is able to reach optimal solutions for the smaller
instances, as BT 96 and ABF04, with only one exception. For the medium and large
instances reaches solutions that are better or equal than ABF04 and much better that
BT 06. Unfortunately, for the larger instances, results from only two instances are re-
ported in [13].

6 Conclusions

In this work we have confronted the Job Shop Scheduling Problem with Sequence De-
pendent Setup Times by means of a genetic algorithm hybridized with local search. As
other approaches reported in the literature, we have extended a solution developed for
the classic JSS problem. We have reported results from an experimental study on the
benchmark proposed in [5] showing that the proposed genetic algorithms produce bet-
ter results than the genetic algorithm proposed in [5], mainly when these algorithms are
hybridized with local search. Here it is important to remark that the running conditions
of both genetic algorithms are not strictly comparable. Also we have experimented with
the benchmark proposed by Brucker and Thiele in [1], and compare our memetic algo-
rithm with two state-of-the-art exact branch and bound approaches due to Brucker and
Thiele [1] and Artigues et al. in [13] respectively. In this case the results shown that our
approach is quite competitive.

As future work we plan to look for new extensions of the G&T algorithm in order
to obtain a complete decoding algorithm and more efficient operators. Also we will try
to extend other local search algorithms and neighborhoods that have been proved to be
very efficient for the JSS problem.

360 M.A. González et al.

Acknowledgements

We would like to thank Waiman Cheung and Hong Zhou, and Christian Artigues for facili-
tating us the benchmarks used in the experimental study. This research has been supported
by FEDER-MCYT under contract TIC2003-04153 and by FICYT under grant BP04-021.

References
1. Brucker, P., Thiele, O.: A branch and bound method for the general-job shop problem with

sequence-dependent setup times. Operations Research Spektrum 18, 145–161 (1996)
2. Brucker, P., Jurisch, B., Sievers, B.: A branch and bound algorithm for the job-shop schedul-

ing problem. Discrete Applied Mathematics 49, 107–127 (1994)
3. Brucker, P.: Scheduling Algorithms, 4th edn. Springer-Verlag, Heidelberg (2004)
4. Carlier, J., Pinson, E.: Adjustment of heads and tails for the job-shop problem. European

Journal of Operational Research 78, 146–161 (1994)
5. Cheung, W., Zhou, H.: Using genetic algorithms and heuristics for job shop scheduling with

sequence-dependent setup times. Annals of Operational Research 107, 65–81 (2001)
6. Zoghby, J., Barnes, J.W., Hasenbein, J.J.: Modeling the re-entrant job shop scheduling prob-

lem with setup for metaheuristic searches. European Journal of Operational Research 167,
336–348 (2005)

7. Giffler, B., Thomson, G.: Algorithms for solving production scheduling problems. Opera-
tions Reseach 8, 487–503 (1960)

8. Bierwirth, C.: A generalized permutation approach to jobshop scheduling with genetic algo-
rithms. OR Spectrum 17, 87–92 (1995)

9. Dell’ Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling problem.
Annals of Operational Research 41, 231–252 (1993)

10. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Man-
agement Science 42, 797–813 (1996)

11. Mattfeld, D.C.: Evolutionary Search and the Job Shop. Investigations on Genetic Algorithms
for Production Scheduling. Springer-Verlag, Heidelberg (1995)

12. González, M., Sierra, M., Vela, C., Varela, R.: Genetic Algorithms Hybridized with Greedy
Algorithms and Local Search over the Spaces of Active and Semi-active Schedules. In:
Marı́n, R., Onaindı́a, E., Bugarı́n, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI),
vol. 4177, pp. 231–240. Springer, Heidelberg (2006)

13. Artigues, C., Belmokhtar, S., Feillet, D.: A New Exact Algorithm for the Job shop Problem
with Sequence Dependent Setup Times. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004.
LNCS, vol. 3011, pp. 96–109. Springer, Heidelberg (2004)

14. Varela,R.,Vela,C.R.,Puente,J.,Gómez,A.:Aknowledge-basedevolutionarystrategyforschedul-
ingproblemswithbottlenecks.EuropeanJournalofOperationalResearch145,57–71(2003)

15. Varela, R., Serrano, D., Sierra, M.: New Codification Schemas for Scheduling with Genetic
Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 11–20.
Springer, Heidelberg (2005)

16. Ovacik, I., Uzsoy, R.: Exploiting shop floors status information to schedule complex jobs.
Operations Research Letters 14, 251–256 (1993)

17. Artigues, C., Lopez, P., Ayache, P.D.: Schedule generation schemes for the job shop problem
with sequence-dependent setup times: Dominance properties and computational analysis.
Annals of Operational Research 138, 21–52 (2005)

18. Taillard, E.D.: Parallel taboo search techniques for the job shop scheduling problem. ORSA
Journal of Computing 6, 108–117 (1993)

19. Lawrence, S.: Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (supplement). Technical report, Graduate School of Indus-
trial Administration, Carnegie Mellon University (1984)

A Description Clustering Data Mining Technique for
Heterogeneous Data

Alejandro Garcı́a López1, Rafael Berlanga2, and Roxana Danger2

1 European Laboratory for Nuclear Research (CERN), Geneva, Switzerland
Alejandro.Garcia.Lopez@cern.ch

2 Depto. de Lenguajes y Sistemas Informáticos. Universitat Jaume I, Castellón, Spain
berlanga@lsi.uji.es, roxana.danger@alumail.uji.es

Abstract. In this work we present a formal framework for mining complex ob-
jects, being those characterized by a set of heterogeneous attributes and their
corresponding values. First we introduce several Data Mining techniques avail-
able in the literature to extract association rules. We show as well some of the
drawbacks of these techniques and how our proposed solution is going to tackle
them. Then demonstrate how applying a clustering algorithm as a pre-processing
step on the data allow us to find groups of attributes and objects that provide us
with a richer starting point for the Data Mining process. Then define the formal
framework, its decision functions and its interesting measurement rules, as well
as a newly designed Data Mining algorithms specifically tuned for our objectives.
We also show the type of knowledge to be extracted in the form of a set of asso-
ciation rules. Finally state our conclusions and propose the future work.

Keywords: Complex objects, association rules, clustering, data mining.

1 Introduction

The problem of mining complex objects, as we understand it, is that of extracting use-
ful information out of multidimensional heterogeneous data. To fully comprehend this
concept we need therefore to define what we mean by extracting useful information and
multidimensional heterogeneous data.

When we talk about multidimensional heterogeneous data, we are referring to col-
lections of attributes of different types (boolean, categorical, numerical, etc.) which
are represented in an structured way. This structured representation would normally be
based on a relational schema, although we could also think of, for example, a collection
of XML documents.

On the other hand, what we mean by extracting useful information is mainly the
discovery of frequent and approximate underlying patterns (Association Rules, ARs),
which can help users to undertake a number of decision taking tasks. Examples of these
are: summarizing a data collection, finding interesting relations amongst its attributes,
finding certain trends, etc.

This kind of association rules can be applied to a wide range of applications. Our
main motivating application consists of mining large log repositories that contain data
about the performance of a GRID infrastructure for ALICE experiments at CERN.

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 361–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 A. Garcı́a López, R. Berlanga, and R. Danger

Stored data records include heterogeneous attributes involving different data types (e.g.
location of a node, average serving time, number of processes, etc.) In this context,
users can be interested on finding frequent patterns amongst these attributes in order to
plan properly the distribution of tasks over the GRID.

The definition of ARs was first stated in [1], referring to binary attributes. Basically
it is defined as follows. Let I = I1, I2, ..., Im be a set of binary attributes, called items.
Let T be a database of transactions. Each transaction t is represented as a binary vector,
with t[k] = 1 if t bought the item Ik , and t[k] = 0 otherwise. Let X be a set of some
items in I . We say that a transaction t satisfies X if for all items Ik in X , t[k] = 1.
An AR is then, an implication of the form X ⇒ Ij , where X is a set of some items
in I , and Ij is a single item in I that is not present in X . An example of this type of
rule is: ”90% of transactions that purchased bread and butter also purchased milk”. The
antecedent of this rule consists of bread and butter and the consequent consists of milk
alone.

In [2] where the concept of Quantitative Association Rules (QARs) is first shown,
the authors deal with the fact that the vast majority of relational databases, either based
on scientific or business information are not filled with binary data-types (as requested
by the classical ARs) but with a much richer range of data-types both numerical and
categorical.

A first approach to tackle this problem consists of mapping the QARs problem into
the boolean ARs problem. The key idea is that if all attributes are categorical or the
quantitative attributes have only a few values, this mapping is straightforward. How-
ever, this approach generates problems as if the intervals are too large, some rules may
not have the required minimum confidence and if they are too small, some rules may
not have the required minimum support. We could also think of the strategy of consid-
ering all possible continuous ranges over the values of the quantitative attribute to cover
the partitioned intervals (to solve the minimum confidence problem) and increase the
number of intervals (solving the problem of minimum support). Unfortunately two new
problems arise: First, if a quantitative attribute has n values (or intervals), there are on
average O(n2) ranges that include a specific value or interval, fact that blows up the ex-
ecution time and second, if a value (or interval) of a quantitative attribute has minimum
support, so will any range containing this value/interval, therefore, the number of rules
increases dramatically.

The approach taken by [2] is different. Considering ranges over adjacent values/ in-
tervals of quantitative attributes to avoid the minimum support problem. To mitigate the
problem of the excess of execution time, they restricted the extent to which adjacent
values/intervals may be combined by introducing a user-specified maximum support
parameter; they stop combining intervals if their combined support exceeds this value.
They introduce as well a partial completeness measure in order to be able to decide
whether to partition a quantitative attribute or not and how many partitions should there
be, in case it’s been decided to partition at all. To address the problem of the appear-
ance of too many rules, they propose an interest measure based on the deviation from
the expectation that helps to prune out the uninteresting rules (extension of the interest
measure already proposed in [3]). Finally an algorithm to extract QARs is presented,
sharing the same idea of the algorithm for finding ARs over binary data given in [4]

A Description Clustering Data Mining Technique for Heterogeneous Data 363

but adapting the implementation to the computational details of how candidates are
generated and how their supports are now counted.

In [5], the authors pointed out the pitfalls of the equi-depth method (interest measure
based on deviation), and presented several guiding principles for quantitative attribute
partitioning. They apply clustering methods to determine sets of dense values in a sin-
gle attribute or over a set of attributes that have to be treated as a whole. But although
they took distance among data into account, they did not take the relations among other
attributes into account by clustering a quantitative attribute or a set of quantitative at-
tributes alone. Based on this, [6] improved the method to take into account the relations
amongst attributes.

Another improvement in the mining of quantitative data is the inclusion of Fuzzy
Sets to solve the sharp boundary problem [7]. An element belongs to a set category
with a membership value, but it can as well belong to the neighbouring ones.

In [8] a mixed approach based on the quantitative approach introduced by [2], the
hash-based technique from the Direct Hashing and Pruning (DHP) algorithm [9] and
the methodology for generating ARs from the apriori algorithm [4] was proposed. The
experimental results prove that this approach precisely reflects the information hidden
in the data-sets, and on top of it, as the data-set increases, it scales-up linearly in terms
of processing time and memory usage.

On the other hand, the work realised by Aumann et al. in [10], proposes a new defini-
tion for QARs. An example of this rule would be: sex = female ⇒ Wage : mean =
$7.90 p/hr (overall mean wage = $9.02). This form of QAR, unlike others doesn’t re-
quire the discretisation of attributes with real number domains as a pre-processing step.
Instead it uses the statistical theory and data-driven algorithms to process the data and
find regularities that lead to the discovery of ARs. A step forward in this kind of rules
was given by [11]. They provide variations of the algorithm proposed in [10] enhancing
it by using heuristic strategies and advanced database indexing. The whole methodol-
ogy is completed with the proposition of post-processing techniques with the use of
similarity and significance measures.

The motivation of this work is to tackle some of the drawbacks of the previous tech-
niques. Most of them require the translation of the original database so that each non-
binary attribute can be regarded as a discrete set of binary variables over which the
existing data mining algorithms can be applied to. This approach can be sometimes
unsatisfactory due to the following reasons: the translated database can be larger than
the original one, the transformation of the quantitative data could not correspond to
the intended semantics of the attributes. Moreover, current approaches do not deal with
heterogeneous attributes but define ad-hoc solutions for particular data types (mainly
numerical ones). As a consequence, they do not provide a common data mining frame-
work where different representations, interesting measures and value clustering tech-
niques can be properly combined.

1.1 Overview of Our Proposal

In this article, we extend the work introduced in [12] by applying clustering techniques
in two steps of the mining process. A schematic view of the overall process can be seen
in Figure 1. First, clustering is applied to the attribute domains, so that each object can

364 A. Garcı́a López, R. Berlanga, and R. Danger

Fig. 1. Overview of our proposal

be expressed as a set of pairs 〈attribute, cluster〉 instead of 〈attribute, value〉. This
new representation allows users to define the most appropriate technique to discretize
numeric domains or to abstract categorical values. We name object sub-description to
the characterisation of an object through value clusters. The second step consists of
clustering object sub-descriptions in order to find frequent patterns between their fea-
tures.

Finally, we propose an algorithm capable of obtaining the frequent itemsets from the
found object subdescription clusters. We distinguish two kind of ARs, namely: inter
and intra-cluster. The former relate attributes of different clusters, whereas the latter
relate attributes locally defined in a cluster. Both kind of ARs provide different levels of
details to users, which can mine a selected cluster involving a restricted set of attributes
(i.e. local analysis) or the whole set of clusters (i.e. global analysis).

The paper is organised as follows: in the next section, we introduce the necessary
concepts of the proposed framework. Then, in Section 3 we explain how we include
clustering in our mining process. In Section 4 we describe a data-mining algorithm that
finds frequent object sub-descriptions, and in Section 5 we describe the preliminary
experimental results. Finally, in Section 6 we give our conclusions and we outline the
future work.

2 Formal Definitions

In the proposed framework, a data collection consists of a set of objects, Ω = o1, o2, ...,
on, which are described by a set of features R = R1, R2, ..., Rm. We will denote with
Di the domain of the i-th feature, which can be of any data type.

We will apply the clustering algorithm to the attributes’ domains in order to find
groups (clusters) of close values and use them instead of the original values. Thus each
object will be no longer characterised by it’s attributes’ values but by the clusters to
which these values belong. We will denote the set of clusters in the domain (Di) of a

A Description Clustering Data Mining Technique for Heterogeneous Data 365

given attribute i as Πi = Gi,1, ..., Gi,r, being r ≥ 1 and Gi,r the r-th cluster in the
domain of the i-th attribute.

On the other hand, we will apply a second clustering step to the object sub - de-
scriptions in order to generate groups of objects that will help us in reducing the final
number of rules. We will denote the set of clusters in Ω as Θ = OG1, ..., OGt, being
t ≥ 1 ≤ n and OGi the i-th cluster in the objects’ domain.

In order to compare two attribute-clusters, each feature Ri has associated a compar-
ison criterion, Ci(x, y), which indicates whether the pair of clusters, x, y ∈ Πi, must
be considered equal or not. This comparison criterion can include specifications for the
case of invalid and missing values in order to deal with incomplete information.

The simplest comparison criterion is the strict equality, which can be applied to any
domain:

C(x, y) =

{
1 if x = y

0 otherwise
Another interesting criteria can use the centroid of each domain cluster. For example,

being ci,r the centroid of the r-th cluster over the i-th attribute the comparison function
looks as follows:

If x ∈ Ga,1 and y ∈ Ga,2 then

C(x, y) =

{
1 if |ca,1 − ca−2| ≤ ε

0 otherwise
Which expresses the fact that two clusters are considered equal if their centroids

differ from each other in at most a given threshold ε.
Since the mining process is intended to discover the combinations of object features

and object clusters that frequently co-occur, it is necessary to manage the different ob-
ject projections. Thus, a subdescription of an object o for a subset of features S ⊆ R,
denoted as I|S(o), is the projection of o over the feature set S. In this context, we denote
o[r] the value of the object o for the feature r.

Moreover, we assume that there exists a similarity function between two object sub-
descriptions, which allow us to decide whether two objects oi and oj must be considered
equal or not by the mining process. All the similarity functions are binary, that is, they
return either 0 (not equal) or 1 (equal).

The simplest similarity function is the following one:

Sim(I|S(o), I|S(o′)) =

⎧⎪⎨
⎪⎩

1 if ∀r ∈ S, C(o[r], o′[r]) = 1)

0 otherwise

which expresses the strict equality by considering the comparison criterion of each
of the subdescription features.

Alternatively, the following similarity function states that two sub-descriptions are
considered equal if they have at least ε features belonging to the same cluster:

Sim(I|S (o), I|S(o′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |{r ∈ S|C(o[r], o′[r]) = 1}| ≥ ε

0 otherwise

In order to compare object-clusters, we can take one representative object of each
cluster. In our approach, such a representative corresponds to the object with maximum
connectivity according to the adopted similarity function. This is because we use a
clustering algorithm that generates star-shaped clusters.

366 A. Garcı́a López, R. Berlanga, and R. Danger

Analogously to the traditional Data Mining works, we also provide definitions of
support and ARs, but applied to this new context.

We define the support of a subdescription v = I |S(o), denoted with Sup(v), based in
the work by [12], as the percentage of objects in Ω whose sub-descriptions are similar
to v, that is:

Sup(v) = |{o′∈Ω|Sim(I|S(o′),v)=1}|
|Ω|

We say that a pair of sub-descriptions v1 = I |R1(o) and v2 = I |R2(o), with R1

⋂
R2 = ∅

and R1, R2 ⊂ R, are associated through the AR v1 ⇒ v2(s, c), if Sup(v′) ≥ s and
Sup(v′)
Sup(v1)

≥ c, where v′ = I |R1∪R2(o). The values of s and c are called support and confi-
dence of the rule respectively.

The problem of computing the AR for complex objects consists of finding all the
AR of the subdescriptions of Ω whose support and confidence satisfy the user-specified
thresholds.

It must be pointed out that the previous definitions subsume the traditional concept
of AR, therefore, if we use strict equality in both the comparison criterion and the
similarity function, we obtain the classical definition of AR.

Besides, we can include other comparison criteria such as the interval-based parti-
tions, for quantitative data, and the is-a relationship of the concept taxonomies, in order
to represent other kinds of ARs [3] [13] [14].

The idea that different items have different levels of interest for the user, as sug-
gested in [15], can be also incorporated in this framework by assigning a weight to each
variable in the similarity function. Moreover, when the variables’ data is fuzzy, it is
perfectly admissible to use as a comparison criterion the membership of the values to
the same fuzzy set.

3 Finding Interesting Subdescriptions

In a previous step to that of finding the interesting ARs we will pre-process the data by
means of clustering algorithms in order to find the groups that will be the base of our
mining process.

The objective of this pre-processing step is that of identifying clusters in the domain
of the attributes that will characterise the objects we will use to extract intra-cluster
rules, and identifying clusters in the domain of the recently discovered object subde-
scriptions in order to extract inter-cluster rules. Mainly, in the first clustering step, we
would be translating the Database from a combination of < attribute, value > into
a combination of < attribute, cluster >. The second clustering process, on the other
hand, would have as a result the creation of groups of objects, that will be the base of
our mining process and the input of the association rules extraction algorithm that will
be presented in the next section.

The algorithm chosen for this process is the Star Clustering Algorithm introduced
in [16], and modified to be order independent in [17]. The main reason for choosing it
is that the Star-based representation of the objects subdescriptions seems a good way
of representing the support of each subdescription (i.e. the number of objects that are
similar to it, also called, satellites, as we will see later). Briefly, the star-shaped graphs
capture the most supported subdescriptions w.r.t. the defined similarity function.

A Description Clustering Data Mining Technique for Heterogeneous Data 367

This algorithm approximates the minimal dominant set of the β − similarity graph.
The minimal dominant set [18] is the smallest set composed of graph’s vertexes that
contains every vertex in the graph, or at least if a vertex is not contained, it has a neigh-
bour that does. The members of the minimal dominant set are called stars and their
neighbours satellites.

A star-shaped sub-graph of l + 1 vertexes consists of a star an l satellites. Each sub-
graph forms a group and the stars are the objects with the biggest connectivity. If an
object is isolated in the graph it is considered as well a star.

The basic steps of this algorithm are the following ones:

– Obtain the β − similarity graph.
– Calculate the degree of every vertex.
– While there’s still ungrouped sub-vertexes do:

• Take the ungrouped vertex with the highest degree.
• Build a group with it an its neighbours.

Figure 2 shows the star-shaped graph of a cluster of object subdescriptions. The
complexity of the algorithm is in O(n2), being n the number of processed objects.

Fig. 2. Example of star-based object cluster

4 Extracting Association Rules

In this section we present an algorithm (see Figure 3) for computing the frequent subde-
scriptions for a collection of complex objects. This algorithm is inspired in the original
algorithm of [4]. However, it also uses the strategy of the Partition algorithm [3] to
compute the support of object subdescriptions. The implementation used is the one ap-
pearing in the R Statistical Package (http://www.r-project.org/), on its module arules
introduced in [19]

It is worth mentioning that in this work an item-set is a subdescription, and its support
is the number of objects in the database that are similar to it.

The algorithm works as follows: first, it finds all the frequent itemsets in side each
cluster, so that the intra-cluster association rules can be extracted. Then, once this rules

368 A. Garcı́a López, R. Berlanga, and R. Danger

Fig. 3. Data Mining Algorithm

have been devised, it will start combining clusters (if a number of conditions occur) by
combining their sets of intra-rules, in order to extract inter-cluster rules.

The conditions to combine to clusters of objects are: First, that the overlap between
both clusters (number of objects present on both clusters) is greater than the minimum
support threshold and second, that there is a minimum number of complementary vari-
ables to assure that the combination of clusters does not result in a redundant set of
frequent item-sets/association rules.

To illustrate the process, let’s think of a clustering process resulting in 3 object clus-
ters, OG1, OG2 and OG3 (resulting from the second clustering process). We would ap-
ply the apriori algorithm to extract the frequent itemsets from within them, being those
denoted by S1, S2 and S3. This 3 sets are the rules at the first level. Then, if the afore-
mentioned conditions are matched, we would start combining the sets of itemsets two
by two in order to find the 2nd level rules: S1 − S2, S1 − S3 and S2 − S3 pruning out
the items present on both sides, and keeping only those who add new information. Fi-
nally we would combine the three of them, in the same way, provided the conditions
of overlapping and complementary variables would be complied, and there would be
some item adding new information to them.

A Description Clustering Data Mining Technique for Heterogeneous Data 369

Fig. 4. Select File Dialog

It’s important to take into account that in order to guarantee the monotonic con-
struction of the frequent itemsets, it is necessary that the similarity functions satisfy
the following condition: if two objects are different with respect to a subdescription
S1, they are also different with respect to any other subdescription S2, such that
S1 ⊂ S2 [12].

5 Preliminary Results

To validate our approach we have developed ObjectMiner, an association rules extrac-
tion tool that implements our method giving the user some extra functionalities like
defining its own similarity measures (Figures 6 and 7) or choosing the clustering algo-
rithm to be applied (Figures 4 and 5). The data on the application’s snapshots is from
our training Database the CIA World Fact-book Database.

Executing the model over the aforementioned Database, we prove that we are able
to generate rules in two levels. From all 175 Countries, 3 clusters are generated at the
first level. This number may vary depending on the similarity measure used for clusters
(that is, for telling if an object belongs in one cluster or not).

The attributes of the Database subject to study were:

– WaterArea: total water area in km2

– LandArea: total land area in km2

– Climate: text describing the type of climate
– Terrain: text describing the type of terrain
– Natural Resources: text explaining the natural resources
– LandUseArableLand: percentage of arable Land.
– LandUsePermanentCrops: percentage of land destined to permanent crops
– LandUseOther: percentage of land destined to other things
– IrrigatedLand: percentage of irrigated land

370 A. Garcı́a López, R. Berlanga, and R. Danger

Fig. 5. Loaded Data

Fig. 6. Similarity Measures

– Population: number of inhabitants
– InfantMortalityRate: infant mortality rate
– LifeExpectancyAtBirthTotal: life expectancy at birth of the whole population in

years
– LifeExpectancyAtBirthFemale: life expectancy at birth for females in years
– LifeExpectancyAtBirthMale: life expectancy at birth for males in years
– Religions: percentage of the different religions represented in the country.
– GDPRealGrowthRate: gross domestic product growth rate
– GDPAgriculture: percentage of the gross domestic product coming from agriculture
– GDPIndustry: percentage of the gross domestic product coming from industry
– GDPServices: percentage of the gross domestic product coming from services
– PopulationBelowPovertyLine: percentage of population considered to be poor
– Industries: description of the main industries of the country
– ElectricityProduction: electricity production in kw/hour
– ExternalDebt: external debt in dollars

A Description Clustering Data Mining Technique for Heterogeneous Data 371

Fig. 7. Textual Similarity Measure

Examples of the similarity measures used are:

– Numerical attributes, as Water Area: abs(rep1 − rep2) <= 50000. That means, that
two objects will fall within the same cluster if their Water Area surface is different
by less than 50000 Km2.

– Textual attributes, as Climate: tf/idf >= 0.5, meaning that two objects will belong
in the same cluster if the tf/idf vector of their climate description differs by 0.5
units.

Examples of the rules generated with our approach in the different levels of detail
available are the following:

– GDPServices ∼ 55 and IrrigatedLand ∼ 75620 then InfantMortalityRate ∼ 0.14476

– LandUseArableLand ∼ 20 and InfantMortalityRate ∼ 0.14476 and WaterArea ∼
470131 then LandArea ∼ 7617960

– LandUseArableLand ∼ 20 and InfantMortalityRate ∼ 0.14476 and LandUseOther
∼ 80 and LandUsePermanentCrops ∼ 10 then WaterArea ∼ 470131

Statistics of the execution:

– Total number of attribute clusters: 1124
– Total number of object clusters: 3 (1st Level), 2(2nd Level) and 1(3rd Level)
– Total number of rules: ∼ 2230

– Execution Time: ∼ 20 minutes (on an Intel Dual Core 2.16Ghz machine)

Further testing is necessary with real-life Databases in order to determine if the
method scales when the size of the problem grows dramatically. The future tests will
be performed over the Internet Usage Database, the Census Income Database and the
MonAlisa Repository Database.

6 Conclusions and Future Work

This paper presents a general framework for mining complex objects stemming from
any of the existing data models (e.g. relational, object-oriented and semi-structured data
models). The mining process is guided by the semantics associated to each object de-
scription feature (attributes), which are stated by the users by selecting the appropriate

372 A. Garcı́a López, R. Berlanga, and R. Danger

representation model. This was the model introduced by [12]. Furthermore, we have
extended the framework to enrich the formal representation of the objects using clus-
ters of both attributes and objects, so that the mining process results in an acceptable
number of higher level rules. We show the process finishes in a reasonable amount of
time producing a number of non-redundant rules in the different detail levels. The future
work includes carrying out a series of experiments over well-known databases and the
Monalisa repository database (http://alimonitor.cern.ch:8889), which is the Grid moni-
toring database for the ALICE experiment at CERN, in order to prove that the proposed
method is generating the expected results. Our future research ideas include as well the
introduction of modifications on the way the similarity measures are defined, and the
reduction of the first mining step to the centroid of each cluster instead of its complete
collection of documents.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., pp. 207–216 (1993)

2. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In:
Jagadish, H.V., Mumick, I.S. (eds.) Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada, pp. 1–12 (1996)

3. Srikant, R., Agrawal, R.: Mining generalized association rules, vol. 13, pp. 161–180 (1997)
4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke,

M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499.
Morgan Kaufmann, San Francisco (1994)

5. Miller, R.J., Yang, Y.: Association rules over interval data, pp. 452–461 (1997)
6. Tong, Q., Yan, B., Zhou, Y.: Mining quantitative association rules on overlapped intervals.

In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 43–50.
Springer, Heidelberg (2005)

7. Kuok, C.M., Fu, A.W.C., Wong, M.H.: Mining fuzzy association rules in databases. SIG-
MOD Record 27, 41–46 (1998)

8. Dong, L., Tjortjis, C.: Experiences of using a quantitative approach for mining association
rules. In: Liu, J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 693–700.
Springer, Heidelberg (2003)

9. Park, J.S., Chen, M.-S., Yu, P.S.: An effective hash based algorithm for mining association
rules. In: Carey, M.J., Schneider, D.A. (eds.) Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data, San Jose, California, pp. 175–186 (1995)

10. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: KDD, pp.
261–270 (1999)

11. Okoniewski, M., Gancarz, L., Gawrysiak, P.: Mining multi-dimensional quantitative associ-
ations. In: Bartenstein, O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS
(LNAI), vol. 2543, pp. 265–275. Springer, Heidelberg (2003)

12. Danger, R., Ruiz-Shulcloper, J., Berlanga, R.: Objectminer: A new approach for mining com-
plex objects. In: ICEIS, (2), pp. 42–47 (2004)

13. Zhing, Z., Lu, Y., Zhang, B.: An effective partitioning-combining algorithm for discovering
quantitative association rules. In: Proc. of the First Pacific-Asia Conference on Knowledge
Discovery and Data Mining (1997)

A Description Clustering Data Mining Technique for Heterogeneous Data 373

14. Hipp, J., Myka, A., Wirth, R., Güntzer, U.: A new algorithm for faster mining of generalized
association rules. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 74–82. Springer,
Heidelberg (1998)

15. Gyenesei, A.: Mining weighted association rules for fuzzy quantitative items. In: Zighed,
A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp.
416–423. Springer, Heidelberg (2000)

16. Aslam, J.A., Pelekhov, K., Rus, D.: Static and dynamic information organization with star
clusters. In: CIKM, pp. 208–217 (1998)

17. Gil-Garcı́a, R., Badı́a-Contelles, J.M., Pons-Porrata, A.: Extended star clustering algorithm.
In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 480–487.
Springer, Heidelberg (2003)

18. Kann, V.: A compendium of NP optimization problems. In: Complexity and Approximation.
Springer, Heidelberg (1999)

19. Hahsler, M., Grün, B., Hornik, K.: arules — A computational environment for mining
association rules and frequent item sets. Journal of Statistical Software 14, 1–25 (2005)

A Pattern Selection Algorithm in Kernel
PCA Applications

Ruixin Yang, John Tan, and Menas Kafatos

Center for Earth Observing and Space Research (CEOSR)
College of Science, George Mason University, VA 22030, U.S.A.

{ryang,jtan,mkafatos}@gmu.edu

Abstract. Principal Component Analysis (PCA) has been extensively used in
different fields including earth science for spatial pattern identification. How-
ever, the intrinsic linear feature associated with standard PCA prevents scientists
from detecting nonlinear structures. Kernel-based principal component analysis
(KPCA), a recently emerging technique, provides a new approach for explor-
ing and identifying nonlinear patterns in scientific data. In this paper, we recast
KPCA in the commonly used PCA notation for earth science communities and
demonstrate how to apply the KPCA technique into the analysis of earth science
data sets. In such applications, a large number of principal components should
be retained for studying the spatial patterns, while the variance cannot be quan-
titatively transferred from the feature space back into the input space. Therefore,
we propose a KPCA pattern selection algorithm based on correlations with a
given geophysical phenomenon. We demonstrate the algorithm with two widely
used data sets in geophysical communities, namely the Normalized Difference
Vegetation Index (NDVI) and the Southern Oscillation Index (SOI). The results
indicate the new KPCA algorithm can reveal more significant details in spatial
patterns than standard PCA.

Keywords: Data mining, knowledge acquisition, large-scale, dimension reduc-
tion.

1 Introduction

Principal Component Analysis (PCA) has been extensively used in different fields since
introduced by Pearson in 1902 (as cited in [1]). This data decomposition procedure is
known by various names in different disciplines such as Karhunen-Loève Transforma-
tion (KLT) in digital signal processing [2], Proper Orthogonal Decomposition (POD)
in studies of turbulence coherent structure with nonlinear dynamical systems [3], and
Empirical Orthogonal Function (EOF) for one variable data [4] or Singular Value De-
composition (SVD) for multiple variables [5] applied to earth science, in particular for
climate studies.

In principle, PCA is a linear procedure to transform data for various purposes includ-
ing dimension reduction (factor analysis), separation of variables, coherent structure
identification, data compression (approximation), feature extraction, etc. Consequently,
PCA results can be viewed and explained from various perspectives. One way to in-
terpret the PCA results is to consider the PCA procedure projecting the original high

J. Filipe, B. Shishkov, and M. Helfert (Eds.): ICSOFT 2006, CCIS 10, pp. 374–387, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Pattern Selection Algorithm in Kernel PCA Applications 375

dimensional data into a new coordinate system. In the new system, the space spanned
by the first few principal axes captures most of the information (variances) of the orig-
inal data [6]. Another point of view, commonly used in earth science, is to consider
the PCA results of spatio-temporal data as a decomposition between the spatial compo-
nents and temporal components. Once again, the approximation defined by the first few
principal components gives the smallest total mean-square error compared to any other
expansions with the same number of items [7].

In earth science applications, the spatial components from the PCA decomposition
are recognized as representative patterns because the spatial components are orthogo-
nal to each other. Correspondingly, the uncorrelated time series (temporal components)
are often used to study the relationships between the corresponding spatial patterns and
a predetermined phenomenon such as the well-known El Niño, characterized by ab-
normally warm sea surface temperature (SST) over the eastern Pacific Ocean. Through
this procedure, patterns can be associated with natural phenomena. One example of
such association is found between Normalized Difference Vegetation Index (NDVI)
patterns and ENSO (El Niño Southern Oscillation) by directly using spatial components
of PCA [8]. Another well-known spatial pattern is obtained by regressing the leading
principal time series from the sea-level-pressure (SLP) to the surface air temperature
(SAT) field [9].

Although PCA is broadly used in many disciplines as well as in earth science data
analysis, the intrinsic linear feature prevents this method from identifying nonlinear
structures. This may be necessary as many geophysical phenomena are intrinsically
nonlinear. As a consequence, many efforts have been made to extend PCA to grasp
nonlinear relationships in data sets such as the principal curve theory [10] and the neu-
tral network-based PCA [11,12], which is limited to low dimensional data or needs
standard PCA for preprocessing. More recently, as the kernel method has been receiv-
ing growing attention in various communities, another nonlinear PCA implementation
as a kernel eigenvalue problem has emerged [13].

The kernel-based principal component analysis (KPCA) actually is implemented via
a standard PCA in feature space, which is related to the original input space by a non-
linear implicit mapping [13]. KPCA has been recently applied to earth science data to
explore nonlinear low dimensional structures [14,15]. Ideally, the intrinsic nonlinear
low dimensional structures in the data can be uncovered by using just a few nonlin-
ear principal components. However, the dimension numbers of the feature space are
usually much larger than the dimension numbers of the input space. Moreover, the vari-
ance cannot be quantitatively transferred from the feature space back into the input
space. Consequently, the numbers of principal components which contribute meaning-
ful amounts of variances are much larger than we commonly encounter in standard PCA
results. Therefore, we need a mechanism to select nonlinear principal patterns and to
construct the representative patterns. In this paper, we present the KPCA algorithms in
language used in climate studies and propose a new KPCA pattern selection algorithm
based on correlation with a natural phenomenon for KPCA applications to earth science
data.

To the best of our knowledge, this work is the first and only effort on using KPCA in
climate studies for knowledge acquisition. Therefore, in the following section, we first

376 R. Yang, J. Tan, and M. Kafatos

describe the PCA algorithm and then the KPCA algorithm in language comparable to
the standard PCA applications in climate studies. Next, we present the newly proposed
KPCA pattern selection algorithm. Then we briefly discuss the earth science data used
for this work in Section 3 and describe the results in Section 4. In Section 5, we first
discuss in-depth our understanding of the KPCA concepts, and finally present conclu-
sions.

The contribution of this work includes two main points: 1) The emerging KPCA
technique is described in the notation of PCA applications commonly used in earth sci-
ence communities, and this work is the first KPCA application to earth science data; 2)
A new spatial pattern selection algorithm based on correlation scores is developed here
to overcome the problems of KPCA applications in earth science data sets, the over-
whelming numbers of components and the lack of quantitative variance description.

2 Algorithm

KPCA emerged only recently from the well-known kernel theory, parallel to other
kernel-based algorithms such as support vector machine (SVM) classification [16]. In
order to compare the similarities and the differences between standard PCA and KPCA,
in this section, we first describe the commonly used standard PCA algorithms applied
to earth science data analysis and then the KPCA algorithm for the same applications.
Then, we discuss the limitation and new issues of KPCA such as pattern selection.
Finally, we describe the new KPCA pattern selection algorithm.

2.1 PCA Algorithm

We follow the notations and procedures common to earth science communities to de-
scribe the standard PCA algorithm and a variant of its implementation by dual ma-
trix [7].

Suppose that we have a spatio-temporal data set, ψ(xm, t), where xm represents the
given geolocation with 1 ≤ m ≤ M , and t, the time, which is actually discretized at
tn(1 ≤ n ≤ N). The purpose of the PCA as a data decomposition procedure is to
separate the data into spatial parts φ(xm) and temporal parts a(t) such that

ψ(xm, t) =
M∑
i=1

ai(t)φi(xm). (1)

In other words, the original spatio-temporal data sets with N time snaps of spatial field
values of dimension M can be represented by M number of spatial patterns. The contri-
bution of those patterns to the original data is weighted by the corresponding temporal
function a(t). To uniquely determine the solution satisfying Equation (1), we place the
spatial orthogonality condition on φ(xm) and the uncorrelated time variability condi-
tion on a(t).

The above conditions result in an eigenvalue problem of covariance matrix C with
λ being the eigenvalues and φ the corresponding eigenvectors. We can construct a data
matrix D with

A Pattern Selection Algorithm in Kernel PCA Applications 377

D =

⎛
⎜⎜⎝

ψ1(t1) ψ1(t2) ... ψ1(tN)
ψ2(t1) ψ2(t2) ... ψ2(tN)

...
ψM (t1) ψM (t2) ... ψM (tN)

⎞
⎟⎟⎠ , (2)

where ψm(tn) ≡ ψ(xm, tn). Each row of matrix D is corresponding to one time series
of the given physical values at a given location, and each column is a point in an M -
dimensional space spanned by all locations, corresponding to a temporal snap. With the
data matrix, the covariance matrix can be written as

C = fac ∗ DD′ (3)

where the apostrophe symbol denotes the transpose operation. In the equation above,
fac = 1/N .

Since the size of matrix D is M×N , the size of matrix C is M×M . Each eigenvector
of C with M components represents a spatial pattern, that is, φ(xm). The corresponding

time series (N values as a vector, a) associated with a spatial pattern represented by
−→
φj

can be obtained by the projection of the data matrix onto the spatial pattern in the form
of −→aj

′ =
−→
φj

′D.
The advantage of the notations and procedures above, as normally defined in the

earth science communities, is that they shed light on interpretation of the PCA results.
Based on the matrix theory, the trace of covariance matrix C is equal to the sum of
all eigenvalues. That is, trace(C) ≡

∑M
i=1 cii =

∑M
i=1 λi. From Equation (2) and

Equation (3), we have

cii =
1
N

N∑
n=1

[ψi(tn)]2 , (4)

which is the the variance of the data at location xi if we consider that the original data
are centered against the temporal average (anomaly data). Therefore, the trace of C is
the total variance of the data, and the anomaly data are decomposed into spatial patterns
with corresponding time series for the contribution weights. The eigenvalues measure
the contribution to the total variance by the corresponding principal components.

Computationally, solving an eigenvalue problem of an M × M matrix of DD′ form
is not always optimal. When N < M , the eigenvalue problem of matrix DD′ can
be easily converted into an eigenvalue problem of a dual matrix, D′D, of size N × N
because the ranks and eigenvalues of DD′ and D′D are the same [1]. Actually, the rank
of the covariance matrix, rC , is equal to or smaller than min(M, N). The summation
in Equation (1) and other corresponding equations should be from 1 to rC instead of
M .

The element of the dual matrix of the covariance matrix:

S = fac ∗ D′D (5)

is not simply the covariance between two time series. Instead,

sij =
1
N

M∑
m=1

[ψm(ti)ψm(tj)] , (6)

378 R. Yang, J. Tan, and M. Kafatos

can be considered as an inner product between two vectors which are denoted by
columns in the data matrix D and are of M components. One should note that spa-
tial averaging does make sense in earth science applications for one variable, unlike in
traditional factor analysis. Nevertheless, the data values are centered against the tem-
poral averages at each location. Due to this fact, the dual matrix S cannot be called a
covariance matrix in strict meanings.

Since the matrix S is of size N × N , the eigenvectors are not corresponding to the
spatial patterns. Actually, they are corresponding to the temporal principal components,
or the time series, a(t). To obtain the corresponding spatial patterns, we need to project
the original data (matrix D) onto the principal time series by

−→
φj = D−→aj (7)

with an eigenvalue dependent scaling.

2.2 KPCA Algorithms

In simple words, KPCA is the implementation of linear PCA in feature space [13]. With
the same notation as we used in the previous section for the spatio-temporal data, we
can recast the KPCA concept and algorithm as follows.

As in the case with dual matrix, we consider each snap of spatial field with M points
as a vector of M components. Then, the original data can be considered as N M -
dimensional vectors or N points in an M -dimensional space. Suppose that there is
a map transforming a point from the input space (the space for original data) into a
feature space, then we have

Φ : RM → F ; ψ �→ X. (8)

Assume the dimension of the feature space is MF , one vector in the input space,
−→
ψ k,

is transformed into

−→
Xk ≡

−−−−→
Φ(

−→
ψ k) =

(
Φ1(

−→
ψk), Φ2(

−→
ψk), ..., ΦMF (

−→
ψk)

)
. (9)

Similar to the data matrix in input space, we can denote the data matrix in the feature
space as

DΦ =

⎛
⎜⎜⎜⎝

Φ1(
−→
ψ1) Φ1(

−→
ψ2) ... Φ1(

−→
ψN)

Φ2(
−→
ψ1) Φ2(

−→
ψ2) ... Φ2(

−→
ψN)

...

ΦMF (
−→
ψ1) ΦMF (

−→
ψ2) ... ΦMF (

−→
ψN)

⎞
⎟⎟⎟⎠ . (10)

Unlike the standard PCA case, where we can actually solve an eigenvalue problem
for either DD′ or D′D depending on the spatial dimension size and the number of
observations (temporal size), we can only define

K = fac ∗ DΦ
′DΦ (11)

for the eigenvalue problem in the feature space. This limitation comes from the so called
“kernel trick” used for evaluating the elements of matrix K .

A Pattern Selection Algorithm in Kernel PCA Applications 379

Comparing to the definition of sij for the standard PCA case, we will have the ele-
ment of matrix K as

kij = fac ∗
(
DΦ

′DΦ

)
ij

=
1
N

(
−−−→
Φ(

−→
ψi) •

−−−→
Φ(

−→
ψj)). (12)

The key of the kernel theory is that we do not need to explicitly compute the inner
product. Instead, we define a kernel function for this product such that

k(x, y) =
(−−→
Φ(x) •

−−→
Φ(y)

)
. (13)

Through the “kernel trick,” we do not need to know either the mapping function Φ or
the dimension size of the feature space, MF , in all computations.

The main computation step in the KPCA is to solve the eigenvalue problem with
Kα = λα. The eigenvalues still can be used to estimate the variance but only in the
feature space. The eigenvector, as the case with dual matrix S in the standard PCA case,
is playing a role of a time series. For the spatial patterns in the feature space, another
projection, similar to that described in Equation (7),

v =
M∑

m=1

αi

−−−→
Φ(

−→
ψi). (14)

is needed. In practice, we do not need to compute v either. What we are more interested
in is the spatial patterns we can obtain from the KPCA process. Therefore, we need to
map back the structures represented by v in the feature space into the input space. Since
the mapping from the input space to the feature space is nonlinear and implicit, it is not
expected that the reverse mapping is simple or even unique. Fortunately, a preimage
(data in the input space) reconstruction algorithm based on certain optimal condition
has been developed already [17]. In this process, all needed computations related to the
mapping can be performed via the kernel function, and the algorithm is used in this
work.

2.3 KPCA Pattern Selection Algorithm

Kernel functions are the key part in KPCA applications. There are many functions that
can be used as kernel as long as certain conditions are satisfied [13]. Examples of ker-
nel functions include polynomial kernels and Gaussian kernels [18]. When the kernel
function is nonlinear as we intend to choose, the dimension in the feature space is usu-
ally much higher than the dimension in the input space [13]. In special situations, the
number of the dimensions could be infinite as in the case presented by the Gaussian
kernel [17]. The higher dimension in feature space is the desired feature for machine
learning applications such as classification because data are more separated in the fea-
ture space and special characters are more easily identified. However, for spatial pattern
extraction in earth science applications, the higher dimensionality introduces new chal-
lenges because we cannot simply pick one or a few spatial patterns associated with the
largest eigenvalues.

380 R. Yang, J. Tan, and M. Kafatos

Moreover, in standard PCA, the principal directions represented by the spatial pat-
terns can be considered as the results of rotation of the original coordinate system.
Therefore, the total variance of the centered data is conserved under the coordinate
system rotation. As a result, significant spatial patterns are selected based on the contri-
bution of variance by the corresponding patterns to the total variance. This can simply
be calculated by the eigenvalues as discussed in Section 2.1. In the KPCA results, the
mapping between the input space and the feature space is nonlinear. Therefore, the vari-
ance is not conserved from input space into the feature space. Consequently, although
the eigenvalues still can be used to estimate the variance contribution in feature space,
the variance distribution in the feature space cannot be quantitatively transferred back
into variance distribution in the input space.

The introduction of higher dimensions in KPCA, that is, a large number of principal
components and the difficulty to quantitatively describe the variance contribution in the
input space by each component require a new mechanism for identifying the significant
spatial patterns. A new pattern selection algorithm is developed [14] to overcome these
problems as described below.

In standard PCA applications for earth science data analysis, the temporal compo-
nents are usually correlated with a time series representing a given natural phenomenon.
And the corresponding spatial pattern is claimed to be related to the phenomenon if the
correlation coefficient is significantly different from zero. In KPCA, we cannot easily
identify such spatial patterns, but we generally have more temporal components, as dis-
cussed in Section 2.2. The eigenvectors α, i.e., the KPCA temporal components, can
be used to select KPCA components which can enhance the correlation to the given
phenomenon.

After we perform the KPCA process on a particular set of data, we utilize an algo-
rithm to obtain a reduced set of temporal components in the pattern selection proce-
dure. Although the variance in feature space does not represent the variance in the input
space, we can still use the eigenvalues as a qualitative measurement to filter KPCA
components which may contribute to the spatial patterns in the input space. We are
interested in the significant KPCA components which are associated with, say, 99.9%
variance in feature space as measured by the corresponding eigenvalues, and treat other
components associated with very small eigenvalues as components coming from vari-
ous noises. The algorithm sorts the temporal components in descending order according
to their correlation score with a given phenomenon. Then linear combinations of them
are tested from the highest score to the lowest, only the combinations that increase the
correlation with the signal of interest are retained. The steps for combining the temporal
components are:

– The correlation score of a vector V with the signal of interest is denoted as corr(V).
– Sort thenormalized PC’saccording to thecorrelationscore→ PC1, PC2, . . . , PCp.
– Save the current vector with the highest correlation score → V := PC1.
– Save the current high correlation score as cc → cc := corr(PC1).
– Maintain a list of the combination of sorted PC’s → List{ } .

Where List.Add{1} results in List{1}, List.Add{2} results in List{1, 2} , etc. . . Loop
over the possible combinations of PC’s that can increase the correlation score. If the

A Pattern Selection Algorithm in Kernel PCA Applications 381

V := PC1

cc := corr(PC1)
List.Add(1)
FOR i := 2 TO p

IF corr(V + PCi) > cc THEN
V := V + PCi

cc := corr(V + PCi)
List.Add(i)

END IF
END FOR

Fig. 1. Pseudo-code of the pattern selection procedure

score is increased, then keep the combination of PC’s. The pseudo-code for the new
pattern selection algorithm is given in Figure 1. In the pseuso-code and in the list above,
p is the number of KPCA components we are interested in after de-noise.

The spatial patterns in input space are computed based on the preimage algorithm
with all selected components [17].

3 Data

A gridded global monthly Normalized Difference Vegetation Index (NDVI) data set was
chosen to implement the KPCA. NDVI is possibly the most widely used data product
from earth observing satellites. The NDVI value is essentially a measure of the vege-
tation greenness [19]. As vegetation gains chlorophyll and becomes greener, the NDVI
value increases. On the other hand, as vegetation loses chlorophyll, the value decreases.

The NDVI data used here were obtained from the NASA data web site [20]. The data
are of 10 × 10 latitude-longitude spatial resolution with global coverage, and monthly
temporal resolution with temporal coverage from January 1982 to December 2001.
Since PCA analysis usually needs data without gaps, only data points with valid NDVI
data in the whole period are chosen in the analysis. Therefore, we worked on global
NDVI data for the 1982-1992 period only. Before using the data with PCA or KPCA,
the NDVI data are deseasonalized by subtracting the climatological values from the
original data. For that reason, the analysis is actually on NDVI anomalies.

In implementations, each point (location) in the physical coordinate system (the
globe in latitude-longitude coordinates) is treated as one dimension, and time another
dimension. Consequently, the data sets are represented in matrix format, and each col-
umn represents one month and each row element in the column represents a grid point
value. In other words, all the latitude-by-longitude grid points for each month will be
unrolled into one column of the data matrix. Therefore, the rows in each column repre-
sent a spatial location in latitude and longitude and each column represents a point in
time as shown in the data matrix of Equation (2).

As a relationship between NDVI PCA patterns and El Niño Southern Oscillation
(ENSO) was found [8], we pick ENSO as the natural phenomenon for implementing
the pattern selection algorithm. El Niño refers to a massive warming of the coastal wa-
ters of the eastern tropical Pacific. The Southern Oscillation refers to the fluctuations of

382 R. Yang, J. Tan, and M. Kafatos

atmospheric pressure in eastern and western Pacific [21], and its amplitude is described
by a normalized sea level pressure difference between Tahiti and Darwin, also called
Southern Oscillation Index (SOI) [22]. Because El Niño is highly correlated with one
phase of the southern oscillation, the phenomenon is usually called El Niño Southern
Oscillation (ENSO). ENSO is the largest known global climate variability on interan-
nual timescales, and the SOI is one of the representative signals of ENSO. The SOI rep-
resents a climatic anomaly that has significant global socio-economic impacts including
flooding and drought pattern modification. The SOI data used here were obtained from
NOAA National Weather Service, Climate Prediction Center [23].

4 Results

The standard linear PCA is first used to the spatio-temporal NDVI anomaly data. As a
widely used procedure, we correlate the principal temporal components with the SOI
time series and find that the correlation is strongest between the fourth component (the
component corresponding to the fourth largest eigenvalue) and SOI. The correlation
coefficient is 0.43, and this component contributes 3.8% of the total variance. The cor-
responding simple spatial pattern is displayed in Figure 2.

In the KPCA analysis, with trials of several kernels for the best results, we choose
the Gaussian kernel,

k(x, y) = exp

(
−‖ x − y ‖2

2σ2

)
. (15)

for the demonstration. We then use the pattern selection algorithms described in Sec-
tion 2.3 to obtain a combined spatial pattern. In order to attain a high correlation, the
free parameter σ in the Gaussian kernel had to be adjusted. Using the data set’s standard
deviation for σ in the Gaussian kernel did not produce the best results. It is possible that
the kernel under-fits the data with that σ. A σ being equal to 26% of the standard de-
viation of the NDVI data set resulted in the correlation score with SOI of r = 0.68.

Fig. 2. Simple NDVI spatial pattern of the fourth spatial component from standard PCA. The gray
scale denotes the anomaly values. The darkest is corresponding to the highly positive anomaly
values.

A Pattern Selection Algorithm in Kernel PCA Applications 383

Fig. 3. Combined NDVI spatial pattern from KPCA results based on Gaussian kernel. The gray
scale is the same as that in Figure 2.

Twenty (20) of the 131 eigenvectors were used, and those are about 15% of the sig-
nificant KPCA components. The corresponding combined spatial pattern with those
selected components is presented in Figure 3.

For comparison, the same pattern selection algorithm is also applied to the standard
PCA results. In this case, 28 of 120 eigenvectors are selected for enhancing the cor-
relation set initially by the fourth component. The resulting correlation coefficient is
r = 0.56. The corresponding combined spatial pattern based on the 28 selected PCA
components is demonstrated in Figure 4. Apparently, the pattern selection algorithm
is more efficient and effective with the KPCA application than with the standard PCA
application because we achieve higher correlation scores with fewer components in the
KPCA case than in the standard PCA case.

By comparing Figure 4 and Figure 3 against Figure 2, we can find that the combined
patterns from either the standard PCA or KPCA components show higher-resolution

Fig. 4. Combined NDVI spatial pattern from standard PCA results with the same pattern selection
algorithm as for KPCA. The gray scale is the same as that in Figure 2.

384 R. Yang, J. Tan, and M. Kafatos

structure than the simple pattern presented by a single PCA component. This result is
not unexpected because PCA components contain high resolution information in com-
ponents with low eigenvalues. In other words, the first principal component associated
with the largest eigenvalue catches large scale features of the data. The key point is that
with standard principal component analysis, we can only pick one component to be as-
sociated with a given phenomenon through a correlation analysis. Once the component
is identified, we cannot associate other components to the same phenomenon. The pat-
tern selection algorithm described in this paper provides a mechanism to select multiple
principal components with one phenomenon.

To explore the difference for information extraction from the combined patterns and
the simple pattern, we display a world drought map for the 1982-1983 El Niño episode
in Figure 5 [24] because the NDVI dataset used here spans the 1982-1992 period. Please
note that the correlation selection in our case is based on a positive correlation coeffi-
cient while the values of SOI associated with El Niño are negative. Therefore, in the
spatial patterns based on an NDVI anomaly (Figres 2–4), positive values are actually
associated with a negative NDVI anomaly due to ENSO, which in return, is associated
with the drought patterns in Figure 5.

The simple PCA pattern (Figure 2) does capture drought patterns, but in large scale
only, such as droughts in the Amazon area, southern Africa, and Australia in the 1982-
1983 period. However, the shapes and sizes of the drought patterns are difficult to com-
pare with the simple PCA pattern. In contrast, the combined patterns from the selection
algorithm applications on standard PCA and KPCA capture the details such as the cur-
vature in the drought patterns in the continental US for the 1983 drought. The combined
KPCA pattern also shows good agreement on the drought patterns in western Africa
around Ivory Coast. The drought pattern in Malaysia and Borneo Island (around 112E
longitude near the Equator) in the South & East Asia region is evident in the combined
patterns from both standard PCA and KPCA, but they are not exhibited in the simple

Fig. 5. World drought pattern during the 1982-1983 El Niño episode (from the web site of Na-
tional Drought Mitigation Center [24])

A Pattern Selection Algorithm in Kernel PCA Applications 385

PCA pattern. Another apparent improvement from the combined KPCA spatial pattern
is that the drought in Europe is more accurately identified in contrast to the simple PCA
pattern.

5 Discussion and Conclusions

From a data decomposition perspective, PCA as well as KPCA are data adaptive meth-
ods. That means that the bases for the decomposition are not chosen a priori, but are
constructed from the data. In the standard linear PCA case, the orthogonality condi-
tion on the spatial patterns and the uncorrelated condition on temporal components
guarantee the uniqueness of the decomposition. Additional freedoms introduced by the
implicit nonlinear transformation make the uniqueness condition invalid, and the KPCA
results depend on the nonlinear structure implicitly described by the kernel. As a result,
different kernels should be tested before significant results can be discovered because
the underlying nonlinear structure can only be picked up by a kernel with a similar
structure.

In a broad sense, principal component analysis describes the co-variability among
multivariate observations. The definition of the co-variability between two observations
actually determines the core structure one may expect from the result. The most com-
monly used definition is covariance or correlation between points defined in either ob-
ject space or variable space [6]. In KPCA application, if we do not consider the process
as a mapping from input space into the feature space, we can treat the “kernel trick”
as another definition of the pair-wise co-variability. However, this definition of the co-
variability can only be implemented on data points defined for each observation. That
is, the KPCA is applied to object space only. This results in the eigenvalue problem
for KPCA being always on a matrix of size N × N , even when M , the number of
variables or geolocations in earth science applications is smaller than N . Since the
mapping function Φ is never determined in the procedure, the computationally efficient
SVD procedure cannot be used either, because the data matrix in feature space, DΦ, is
not known.

The pair-wise co-variability is actually a measure of the pair-wise proximities. There-
fore, KPCA can be understood in a broad sense as a general means to discover “dis-
tance” or “similarity (dissimilarity)” based structure. That is why most dimension re-
duction algorithms such as Multidimensional Scaling (MDS) [25], Locally Linear Em-
bedding (LLE) [26], and Isomap [27] can be related to KPCA algorithm [28].

In conclusion, the KPCA algorithm is recast in the notation of PCA commonly used
in earth science communities and is used for NDVI data. To overcome the problems
of KPCA applications in earth sciences, namely the overwhelming numbers of compo-
nents and lack of quantitative variance description, a new spatial pattern selection al-
gorithm based on correlation scores is proposed here. This selection mechanism works
both on standard PCA and KPCA, and both give superior results compared to the tra-
ditional simple PCA pattern. In the implementation example with NDVI data and the
comparison with the global drought patterns during the 1982-1983 El Niño episode,
the combined patterns show much better agreement with the drought patterns on details
such as locations and shapes.

386 R. Yang, J. Tan, and M. Kafatos

References

1. Von Storch, H., Zwiers, F.W.: Statistical Analysis in Climate Research. Cambridge Univer-
sity Press, Cambridge (1999)

2. Haddad, R.A., Parsons, T.W.: Digital Signal Processing: Theory, Applications, and Hard-
ware. Computer Science Press (1991)

3. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems
and Symmetry. Cambridge University Press, Cambridge (1996)

4. Lorenz, E.N.: Empirical orthogonal functions and statistical weather prediction. In: Final
Report, Statistical Forecasting Project, 1959. Massachusetts Institute of Technology, Dept.
of Meteorology, pp. 29–78 (1959)

5. Wallace, J.M., Smith, C., Bretherton, C.S.: Singular Value Decomposition of Wintertime Sea
Surface Temperature and 500-mb Height Anomalies. Journal of Climate 5, 561–576 (1992)

6. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Oxford Univer-
sity Press, Oxford (1988)

7. Emery, W.J., Thomson, R.E.: Data Analysis Methods in Physical Oceanography. Elsevier,
Amsterdam (2001)

8. Li, Z., Kafatos, M.: Interannual Variability of Vegetation in the United States and Its Relation
to El Niño/Southern Oscillation. Remote Sensing of Environment 71, 239–247 (2000)

9. Thompson, D.W.J., Wallace, J.M.: Annular Modes in the Extratropical Circulation. Part I:
Month-to-Month Variability. Journal of Climate 13, 1000–1016 (2000)

10. Hastie, T., Stuetzle, W.: Principal Curves. Journal of the American Statistical Association 84,
502–516 (1989)

11. Kramer, M.A.: Nonlinear Principal Component Analysis Using Autoassociative Neural Net-
works. AIChE J. 37(2), 233–243 (1991)

12. Monahan, A.H.: Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Sur-
face Temperature and Sea Level Pressure. Journal of Climate 14, 219–233 (2001)

13. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear Component Analysis as a Kernel Eigen-
value Problem. Neural Computation 10, 1299–1319 (1998)

14. Tan, J.: Applications of Kernel PCA Methods to Geophysical Data. George Mason Univer-
sity, PhD Thesis (2005)

15. Tan, J., Yang, R., Kafatos, M.: Kernel PCA Analysis for Remote Sensing Data. In: 18th Con-
ference on Climate Variability and Change, Altanta, GA, CD-ROM, Paper P1.5. American
Meteorological Society (2006)

16. Schölkopf, B., Burges, C.J.C., Smola, J.: Advances in Kernel Methods: Support Vector
Learning. MIT Press, Cambridge (1999)

17. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and
De-noising in Feature Spaces. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in
Neural Information Processing Systems, vol. 11, pp. 536–542. MIT Press, Cambridge (1999)

18. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.: In-
put Space vs. Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Net-
works 10, 1000–1017 (1999)

19. Cracknell, A.P.: The Advanced Very High Resolution Radiometer. Taylor & Francis Inc,
Abington (1997)

20. GES DISC (NASA Goddard Earth Sciences (GES) Data and Information Services Cen-
ter (DISC)): Pathfinder AVHRR Land Data (2006), (Last accessed on February 9, 2006),
ftp://disc1.gsfc.nasa.gov/data/avhrr/Readme.pal

21. Philander, S.G.: El Niño, La Niña, and the Southern Oscillation. Academic Press, London
(1990)

ftp://disc1.gsfc.nasa.gov/data/avhrr/Readme.pal

A Pattern Selection Algorithm in Kernel PCA Applications 387

22. Ropelewski, C.F., Jones, P.D.: An Extension of the Tahiti–Darwin Southern Oscillation In-
dex. Monthly Weather Review 115, 2161–2165 (1987)

23. CPC (Climate Predication Center/NOAA): (STAND TAHITI - STAND DARWIN) SEA
LEVEL PRESS ANOMALY (2006), (Last accessed on February 5, 2006),
http://www.cpc.ncep.noaa.gov/data/indices/soi

24. NDMC (National Drought Mitigation Center): What is Drought? (2006), (Last accessed on
February 8, 2006), http://www.drought.unl.edu/whatis/elnino.htm

25. Cox, T.F., Cox, M.A.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2000)
26. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding.

Science 290, 2323–2326 (2000)
27. Tenenbaum, J.B., de Silva, V., Langford, J.: A Global Geometric Framework for Nonlinear

Dimensionality Reduction. Science 290, 2319–2323 (2000)
28. Ham, J., Lee, D., Mika, S., Schölkopf, B.: Kernel View of the Dimensionality Reduction of

Manifolds. In: Proceedings of the 21st International Conference on Machine Learning (2004)

http://www.cpc.ncep.noaa.gov/data/indices/soi
http://www.drought.unl.edu/whatis/elnino.htm

Author Index

Al Hajj Hassan, M. 230
Anderson, Cristina 97
Augusto, Juan Carlos 16

Bamha, M. 230
Bansal, Veena 270
Bergel, Alexandre 74
Berlanga, Rafael 361
Borgi, Amel 335

Calero, Coral 195
Cantone, Giovanni 136
Cazzola, Emanuele 84
Clarke, Siobhán 74
Coleman, Gerry 153
Cornea, Marius 97
Costanza, Pascal 74

Damiani, Ferruccio 84
Danger, Roxana 361

Ehlmann, Bryon K. 257
Evangelidis, Georgios 293

Falessi, Davide 136

Garćıa, Félix 165
Garćıa López, Alejandro 361
Giachino, Elena 84
Giannini, Paola 84
Gilb, Tom 27
Ginige, Athula 307
Gómez, Oswaldo 165
González, Miguel A. 348
Guirado-Puerta, A.M. 220

Henderson-Sellers, B. 51
Hirschfeld, Robert 74
Höfferer, Peter 37

Kafatos, Menas 374
Karagiannis, Dimitris 37
Kuchen, Herbert 204
Kusakabe, Shigeru 242

Liang, Xufeng (Danny) 307

Maciaszek, Leszek A. 3
Malgosa-Sanahuja, J. 220
Manzanares-Lopez, P. 220
McCaffery, Fergal 153
Moraga, Ángeles Ma 195
Muñoz-Gea, J.P. 220

Newmarch, Jan 113

O’Connor, Rory V 153
Oktaba, Hanna 165

Perez, Jose Manuel 127
Petrovskiy, Mikhail 323
Pfeifer, Marco 177
Piattini, Mario 127, 165, 195
Poldner, Michael 204
Poulovassilis, Alexandra 279
Puente, Jorge 348
Puntigam, Franz 61

Ruiz, Francisco 127

Sanchez-Aarnoutse, J.C. 220
Schmid, Hans Albrecht 177
Sharma, Smriti 270
Sierra, Maŕıa R. 348

Tan, John 374
Taniguchi, Hideo 242
Tsen, Charles 97

Varela, Ramiro 348
Vela, Camino R. 348
Voulalas, Georgios 293

Walker, David 195
Williams, Dean 279

Yamada, Satoshi 242
Yang, Ruixin 374

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Adaptive Integration of Enterprise and B2B Applications
	Introduction
	Development or Integration?
	Classifying Integration
	Assuring Adaptive Integration
	Defining Adaptiveness
	Delivering Adaptiveness
	Verifying Adaptiveness

	Summary
	References

	Ambient Intelligence: Basic Concepts and Applications
	Introduction
	Ambient Intelligence
	Smart Homes
	Other Environments and Applications for AmI
	SystemFlow
	AmI Scenarios
	Are We There Yet...?
	Conclusions
	References

	How to Quantify Quality: Finding Scales of Measure
	Finding and Developing Scales of Measure and Meters
	Reference Library for Scales of Measure
	Reference Library for Meters

	Managing ‘What’ You Measure
	Practical Example: Scale Definition
	Language Core: Scale Definition
	Principles: Scale Specification
	Conclusions
	References

	Metamodeling as an Integration Concept
	Introduction
	Modeling and Metamodeling
	Metamodels in Action: Design and Integration
	Design
	Integration

	Semantic Integration and Interoperability Using Metamodels and Ontologies
	Conclusions and Outlook
	References

	Engineering Object and Agent Methodologies
	Methodologies and Method Engineering
	Existing OO Method Fragments in the Open Repository
	The Fame Project: New AO Method Fragments and a New Metamodel
	AO Fragments
	A New Metamodel

	Summary
	References

	PART I Programming Languages
	From Static to Dynamic Process Types
	Introduction
	Static Process Types
	Dynamic Tokens
	Dynamic Typing
	Race-Free Programs
	Discussion, RelatedWork
	Conclusions
	References

	Aspectboxes: Controlling the Visibility of Aspects
	Introduction
	Motivation
	Example Analysis
	Scoping Aspects with Aspectboxes
	Aspectboxes in a Nutshell
	Namespace for Classes and Aspects
	Executing Code in an Aspectbox
	Absolute Isolation of Aspects

	Implementation
	Related Work
	Conclusions
	References

	On State Classes and Their Dynamic Semantics
	Introduction
	An Example
	A Calculus for $STATEJ$
	Syntax
	Operational Semantics

	From$STATEJ$ to $JAVA$
	Related Work
	Future Work
	References

	Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic
	Introduction
	IEEE 754R Decimal Floating-Point
	Conversions between Decimal and Binary Formats
	Decimal Floating-Point Addition
	Decimal Floating-Point Multiplication
	Decimal Floating-Point Division
	Decimal Floating-Point Square Root
	Conclusions
	References

	PART II Software Engineering
	Bridging between Middleware Systems: Optimisations Using Downloadable Code
	Introduction
	Bridging
	Downloadable Code
	Optimising Transport-Level Bridging
	Service Cache Manager
	Optimising Service-Level Bridging
	Device-Level Bridging
	Optimising Device-Level Bridging
	Event Handling
	Implementation of Optimised Jini-UPnP Bridging
	Assessment
	Transport-Level Optimisation
	Service-Level Optimisation
	Device-Level Optimisation
	Generality

	Value ofWork
	Conclusions
	References

	MDE for BPM: A Systematic Review
	Introduction
	Systematic Reviews
	Review Results
	Studies Selection
	Classification of Studies

	Findings and Analysis
	Conclusions and Future Work
	References

	Exploring Feasibility of Software Defects Orthogonal Classification
	Introduction
	Related Works
	Study Motivations and View

	Goal and Experiment Hypotheses
	Experiment Planning and Operation
	Independent Variables: Parameters, Blocking Variables and Factors
	Dependent Variables

	Results and Data Analysis
	Descriptive Statistics
	Hypothesis Testing

	Discussion
	Experiment Results
	Threats to Validity

	Conclusions and Future Works
	References

	Mapping Medical Device Standards Against the CMMI for Configuration Management
	Introduction
	Medical Device Industry
	CMMED Development
	Guideline Mapping
	Goal 1: Establish Baselines
	Goal 2: Track and Control Changes
	Goal 3: Establish Integrity

	Preliminary Feedback
	Summary and Conclusions
	References

	A Systematic Review Measurement in Software Engineering: State-of-the-Art in Measures
	Introduction
	Systematic Reviews
	The Systematic Review Process

	Systematic Review about Software Measures
	Result Analysis
	Conclusions and Further Work
	References

	Engineering a Component Language: CompJava
	Introduction
	Language Requirements
	CompJava Overview
	Component Types
	Low-Level Components
	Implementing Provided Ports
	Accessing Required Ports

	Component Composition
	Subcomponents
	Connecting Ports with Plugs
	Factoring Out SourceHandling

	Dynamic Architectures
	Conclusions
	References

	PART III Distributed and Parallel Systems
	Towards a Quality Model for Grid Portals
	Introduction
	Quality Model for Grid Portals
	Adaptation of the PQM Dimensions
	Inserting New Dimensions
	Definitive Model (G-PQM)

	Applying G-PQM
	GridPort Demo Portal
	OGCE Portal

	Conclusions and Future Work
	References

	Algorithmic Skeletons for Branch and Bound
	Introduction
	Branch and Bound
	Branch and Bound Skeletons
	Design with a CentralizedWork Pool Manager
	Distributed Work Pool
	Load Distribution and Knowledge Sharing
	Termination Detection

	Experimental Results
	Conclusions
	References

	A Hybrid Topology Architecture for P2P File Sharing Systems
	Introduction
	P2P Overlay Networks
	Description of the System
	Obtaining the Identifiers and Joining the General Network
	Joining the Sub-group
	Management of the Hierarchy
	Management of the $\it {Rendez-Vous}$ Nodes
	Registering the Shared Files
	Search

	Advantages of the System
	Simulations
	Conclusions
	References

	Parallel Processing of “Group-By Join” Queries on Shared Nothing Machines
	Introduction
	The BSP Cost Model
	Computation of “Group-By Join” Queries
	Presented Algorithm
	Conclusions
	References

	Impact of Wrapped System Call Mechanism on Commodity Processors
	Introduction
	Scheduling Mechanisms in CEFOS
	CEFOS for Fine-GrainedMultithreading
	Display Requests and Data (DRD) Mechanism
	WSC Mechanism

	Evaluation: System Call Overhead
	Estimation of the Effectiveness ofWSC
	Performance Evaluation Using $getpid()$

	Evaluation: Locality of Reference
	cp Program
	Performance Evaluation

	Conclusions
	References

	PART IV Information Systems and Data Management
	Adding More Support for Associations to the ODMG Object Model
	Introduction
	ORN and Related Work
	Adding ORN to ODL
	Associations in ODL
	Adding ORN Syntax
	ORN Semantics in ODL Context

	Implementing ORN
	Conclusions
	References

	Measuring Effectiveness of Computing Facilities in Academic Institutes: A New Solution for a Difficult Problem
	Introduction
	Proposed Model
	Model Validation
	Data Collection
	Data Analysis and Results
	Hypotheses

	Conclusions
	References

	Combining Information Extraction and Data Integration in the ESTEST System
	Introduction
	Background
	The ESTEST System
	Integrate Data Sources
	CreateMetadata to Assist the IE Process
	Information Extraction Component
	Integrate Results of IE
	Remaining ESTEST Phases

	Experiments with Road Traffic Accident Data
	Related Work
	Conclusions and Future Work
	References

	Introducing a Change-Resistant Framework for the Development and Deployment of Evolving Applications
	Introduction
	Defining the Puzzle
	MDA and Microsoft Software Factories
	Rethinking MDA
	The Proposed Framework
	Domain Model
	Application Model
	Operation Model
	Discussion

	Conclusions and Further Research
	References

	Smart Business Objects for Web Applications: A New Approach to Model Business Objects
	Introduction
	Related Work
	Smart Business Object
	High-Level Architecture of Smart Business Object
	The Smart Business Object Schema
	Smart Business Object Modelling Language
	Creating Web Applications Using Smart Business Object
	Creating a Customer Relationship Management (CRM) Application

	Conclusions
	References

	A Data Mining Approach to Learning Probabilistic User Behavior Models from Database Access Log
	Introduction
	Problem Definition
	Our Approach
	Experiments
	Conclusions
	References

	PART V Knowledge Engineering
	Approximate Reasoning to Learn Classification Rules
	Introduction
	The Supervised Learning Method Sucrage
	Rules Generation
	Basic Inference Engine

	Approximate Reasoning
	Proximity between Observation and Premise
	Approximate Inference

	Approximate Reasoning to Learn New Rules
	Method with a Constant Number of Rules
	Method with Addition of Rules

	Tests and Results
	Results of the Method with a Constant Number of Rules
	Results of the Method with Addition of Rules

	Conclusions
	References

	Combining Metaheuristics for the Job Shop Scheduling Problem with Sequence Dependent Setup Times
	Introduction
	Problem Formulation
	Genetic Algorithm for the SDJSS Problem
	Decoding Algorithm

	Local Search
	Feasibility Checking
	Makespan Estimation

	Experimental Study
	Conclusions
	References

	A Description Clustering Data Mining Technique for Heterogeneous Data
	Introduction
	Overview of Our Proposal

	Formal Definitions
	Finding Interesting Subdescriptions
	Extracting Association Rules
	Preliminary Results
	Conclusions and Future Work
	References

	A Pattern Selection Algorithm in Kernel PCA Applications
	Introduction
	Algorithm
	PCA Algorithm
	KPCA Algorithms
	KPCA Pattern Selection Algorithm

	Data
	Results
	Discussion and Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Coated v2 300% \050ECI\051)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

